

FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CENTRE OF COMPUTER GRAPHICS AND VISUALIZATION

PLZEŇ CZECH REPUBLIC

http://graphics.zcu.cz

COMPUTER GENERATED DISPLAY HOLOGRAPHY

Petr Lobaz

lobaz@kiv.zcu.cz Faculty of Applied Sciences University of West Bohemia Pilsen, Czech Republic

A tutorial at Eurographics 2017 Lyon, France, 24 April 2017

slide 2 / 126

slide 3 / 126

slide 4 / 126

slide 5 / 126

Tutorial contents

- Non-holographic technologies, principle of holography, applications of holography
- 2 Basic tools of computer generated display holography
- 3 Algorithms for hologram generation
- 4 Holographic displays
- 5 Competing technologies
- 6 Recommended reading

Star Wars: A New Hope (directed by G. Lucas, 1977)

Computer generated display holography (Eurographics 2017)

slide 7 / 126

Microsoft HoloLens: visualization of augmented reality

Computer generated display holography (Eurographics 2017)

slide 8 / 126

Kagamine Rin & Len at a Hatsune Miku concert

Computer generated display holography (Eurographics 2017)

slide 9 / 126

Cheoptics 360[™] by viZoo

Computer generated display holography (Eurographics 2017)

slide 10 / 126

360° Light Field Display University of Southern California

Computer generated display holography (Eurographics 2017)

slide 11 / 126

Left-Eye

Display

Integral (light field) display (nVidia near-to-eye prototype)

Computer generated display holography (Eurographics 2017)

Right-Eye

Display

slide 12 / 126

Plasma volumetric display by Burton Inc.

Computer generated display holography (Eurographics 2017)

slide 13 / 126

observer

light reflected off the object

Computer generated display holography (Eurographics 2017)

slide 14 / 126

slide 15 / 126

slide 16 / 126

slide 17 / 126

slide 18 / 126

Light diffraction

• depends on frequency f = 1 / d of the pattern output angle of the rays: grating equation $\sin \theta_{out} = m\lambda / d + \sin \theta_{in}$

slide 19 / 126

Image formation by means of diffraction

- grating equation: $\sin \theta_{out} = m\lambda / d + \sin \theta_{in}$
- example: $\lambda = 0,5 \ \mu m$ d = 10 μm $\theta_{in} = 0$ m = 1

observer

Diffraction pattern formation using interference

 an interference pattern can be recorded and subsequently used as a diffraction pattern

Light interference

 two "coherent" light beams "interfere": create a pattern of light and dark stripes

light intensity on the screen: the interference pattern

$$d = \frac{\lambda}{\sin\theta_{\rm A} - \sin\theta_{\rm B}}$$

example: $\lambda = 0,5 \ \mu m$ $\theta_A = 45^\circ$ $\theta_B = -45^\circ$ $\Rightarrow d = 0,35 \ \mu m$

Principle of holography

- interference equation: $d = \lambda_1 / (\sin \theta_A \sin \theta_B)$ grating equation: $\sin \theta_{out} = m\lambda_2 / d + \sin \theta_{in}$
- after substitution of d: the sin θ equation

$$\sin\theta_{\rm out} = m \, \frac{\lambda_2}{\lambda_1} \, (\sin\theta_A - \sin\theta_B) + \sin\theta_{\rm in}$$

• for m = 1, $\lambda_1 = \lambda_2$, $\sin \theta_B = \sin \theta_{in} \Rightarrow \sin \theta_{out} = \sin \theta_A$

- hologram: the interference pattern of
 - an object wave: $\theta_{obj} (= \theta_A), \lambda_1 = \lambda_{ref}$
 - a reference wave:

$$\Theta_{\text{obj}} (= \Theta_{\text{A}}), \lambda_1 = \lambda_{\text{ref}}$$

 $\Theta_{\text{ref}} (= \Theta_{\text{B}}), \lambda_1 = \lambda_{\text{ref}}$

- hologram observation: illuminate it by
 - an illumination wave: θ_{iii} (= θ_{in}), $\lambda_2 = \lambda_{iii}$
- $\sin \theta_{\text{out}} = m \frac{\lambda_{\text{ill}}}{\lambda_{\text{ref}}} (\sin \theta_{\text{obj}} \sin \theta_{\text{ref}}) + \sin \theta_{\text{ill}}$
- example: $\lambda_{iII} = \lambda_{ref}$, $\theta_{iII} = \theta_{ref} = 0$

Virtual image formation

- illuminate hologram with a light source
- light beams diffract on the interference pattern
- diffracted rays are the same as the rays from the original object

Real image formation

- output angle of the rays: $\sin \theta_{out} = m\lambda / d + \sin \theta_{in}$
- for m = -1, rays can create real image of the scene
- both rays for m = +1 and −1 appear at once
 ⇒ no need to distinguish between them

Classical holography

- capturing the interference pattern of laser lights using a photosensitive material
 - requires high quality lasers
 - requires high resolution recording materials (currently up to 10000 lines/mm)
 - requires vibration-free environment
 - usually requires chemical processing
- reconstructing the hologram using light source
 custom lighting setup required
- properly recorded and illuminated holograms provide ultra realistic image

Digital holography (DH)

- light sensitive sensor (e.g. CCD or CMOS) instead of photochemical light sensitive material
 - very fast
 - cannot capture high spatial frequencies (currently about 250 lines/mm)
- numerical simulation of the hologram reconstruction
- digital processing of the captured hologram instead of its visual inspection
 - automatic evaluation
 - allows processing hard to achieve in classical holography

Computer generated holography (CGH)

- numerical simulation of the hologram recording process ("sort of")
- electronic display of a hologram
 - e.g. microdisplays with very fine pixels (spatial light modulators), currently up to 130 lines/mm
- "printing a hardcopy"
 - laser lithography
 expensive, up to 600 lines/mm
 - electron beam lithography
 very expensive, up to 10000 lines/mm
- other technologies let us talk about them later

Computer generated display holography (CGDH)

- computer generated hologram of a 3-D scene for **display purposes**
- computer graphics
 - makes a digital image to be displayed on a common electronic display
- computer generated display holography
 - makes a pattern to be displayed on a holographic display
- combination approaches are common, e.g., computer graphics for image rendering, subsequent classical holography for making an interference pattern

Basic hologram recording setups

- on-axis (Gabor) hologram
 - mostly for transparent objects (restrictive)
 - image damaged by the 0th order, ±1st orders overlap (bad)
 - low spatial frequencies (100 lines/mm good)

- off-axis transmission (Leith-Upatnieks) hologram
 - for both opaque and transparent objects
 - clear image (good)
 - high spatial frequencies (1000 lines/mm bad)
 - visible in laser light only (uncomfortable)

recording

reconstruction

Computer generated display holography (Eurographics 2017)

slide 32 / 126

- reflection (Denisyuk) hologram
 - the simplest setup (good)
 - visible in white light (good)
 - simply allows colour imaging (very good)
 - high spatial frequencies (4000 lines/mm bad)
 - the diffraction pattern is volumetric, i.e., 3-D, not planar, i.e., 2-D (very bad)

Applications of holography

- cultural heritage conservation
 - holograms instead of real exhibits
 - the exhibit too
 valuable or fragile,
 multiple exhibitions
 at once, multiple
 views of the same
 exhibit at once
 - almost perfect image of the exhibit, scale 1:1

A full colour Denisyuk hologram of the "15th anniversary Fabergé Easter egg", A. Sarakinos, HIH, 2015.

- microscopy, visual inspection
 - perfect recording of light (from a biological sample, a bubble chamber, ...)
 - 2. hologram examination

(unlimited time of observation,

examination in safe environment,

holograms can be archived, ...)

- digital holographic microscopy
 - acquisition of a digital hologram
 - numerical reconstruction
 - ⇒ signal filtering, unwanted diffraction removal, numerical analysis, ...

- enhancing electron microscopy
 - original D. Gabor idea behind holography (although in fact, it never worked)
 - hologram recording with electron beam $(\lambda \text{ is } 100000 \times \text{ smaller than for visible light})$
 - − hologram enlargement, visible light illumination
 ⇒ image 100000× bigger

in the sin θ equation: $\lambda_{iII} / \lambda_{ref} = 100000$ sin $\theta_{out} = m \frac{\lambda_{iII}}{\lambda_{ref}} (\sin \theta_{obj} - \sin \theta_{ref}) + \sin \theta_{iII}$

Computer generated display holography (Eurographics 2017)

- holographic optical elements (HOE)
 - mimicking any optical element
 - cheaper, easier aberration correction, ...
 - also called diffractive optical elements (DOE)
 (the difference between HOE and DOE is subtle)

holographic optical element recording

holographic optical element usage

Computer generated display holography (Eurographics 2017)

slide 38 / 126

 example: holographic optical element (waveguide coupler) for augmented reality head-up displays

Computer generated display holography (Eurographics 2017)

slide 39 / 126

- non-destructive testing
 - double object recording on one hologram: shifts between recordings smear hologram fringes
 - taking a hologram of a vibrating object:
 vibration causes loss of hologram fringes
 - ⇒ no fringes = no image = black strips on the object

K. Molin, N. Stetson, Institute of Optical Research, Stockholm (1971)

Computer generated display holography (Eurographics 2017)

slide 40 / 126

- surface metrology
 - digital hologram of a real object
 - numerical reconstruction of a hologram
 - reconstructed phase ~ surface bumpiness

(Schnars et al.: Digital Holography and Wavefront Sensing)

Computer generated display holography (Eurographics 2017)

- remote digital holographic interferometry
 - hologram of a master sample (A)
 - reconstruction of a real image
 of a master over a tested object B
 - contours ~ objects differences

master

contours

(Schnars et al.: Digital Holography and Wavefront Sensing)

Computer generated display holography (Eurographics 2017)

slide 42 / 126

- making a master stamp expensive
- making embossed copies cheap
- can contain hidden features
- ⇒ hard to counterfeit
- ⇒ suitable as a security element

Optaglio

BASIC TOOLS OF COMPUTER GENERATED DISPLAY HOLOGRAPHY

Computer generated display holography (Eurographics 2017)

slide 44 / 126

Nature of light

- force interaction between (oscillating) point charges
- a point source of light: amplitude phase movement up and down $\sim A \cos(\varphi - \omega t)$
- optical field (~ electromag. force) at a distance r: $u(r, t) = \frac{A}{r} \cos \left[\varphi - \omega \left(t - \frac{r}{c} \right) \right] = \frac{A'(r)}{r} \cos \left(\frac{\varphi'(r)}{r} - \omega t \right)$ amplitude at r
 amplitude at r
 amplitude at r
 - T f = 1/T $\omega = 2\pi/T$ C $\lambda = cT$ $k = 2\pi/\lambda$

period of oscillation 1.7×10^{-15} s(time) frequency600 THzangular frequency600 THzspeed of light $0.5 \ \mu m$ wave number $1.2 \times 10^7 \ m^{-1}$

Computer generated display holography (Eurographics 2017)

slide 46 / 126

- photographic film reacts on time average of light intensity $\propto (A')^2$
- \Rightarrow cannot distinguish close "dimmer" light from distant "brighter" light

X

intensity of light

Computer generated display holography (Eurographics 2017)

slide 47 / 126

Phasor arithmetic

- $j^2 = -1$
- $e^{jx} = \cos x + j \sin x$
- $u(r, t) = A(r) \cos[\varphi(r) \omega t] = \operatorname{Re}\{A(r) e^{j[\varphi(r) \omega t]}\}$ = $\operatorname{Re}\{A(r) e^{j\varphi(r)} e^{-j\omega t}\}$

phasor

- phasor (complex amplitude): $U(r) = A(r) e^{j\varphi(r)}$
- light amplitude: A = |U|light phase: $\varphi = \arg(U)$
- light intensity:

$$I = |U|^2 = UU^* = A e^{j\varphi} A e^{-j\varphi} = A^2$$

slide 48 / 126

Advantage of phasor arithmetic

- optical field time dependent function: $u(r, t) = A(r) \cos(\varphi(r) - \omega t)$
- its phasor (complex amplitude):
 U(r) = A(r) exp[jφ(r)]
- sum of optical fields: $A_1(r) \cos(\varphi_1(r) - \omega t) + A_2(r) \cos(\varphi_2(r) - \omega t) + \cdots$
- in phasor arithmetic: $A_1(r) \exp[j\varphi_1(r)] + A_2(r) \exp[j\varphi_2(r)] + \cdots$

 $= U_{\text{total}}(r)$

= ?

• optical field (if needed): $u_{total}(r, t) = \text{Re}\{U_{total}(r) e^{-j\omega t}\}$

Hologram recording simulation

- assume hologram in the plane z = 0
- calculation of a hologram of a synthetic scene:
 for every point (x, y, 0) of the hologram:
 - get the complex amplitude U_{obj} of the object wave at (x, y, 0)
 - get the complex amplitude U_{ref} of the reference wave at (x, y, 0)
 - calculate captured intensity at (x, y, 0) $I(x, y, 0) = |U_{obj} + U_{ref}|^2$

Computer generated hologram of a point cloud

- the simplest algorithm in CGH
- basic building block of advanced algorithms of computer generated display holography

Computer generated display holography (Eurographics 2017)

- spherical wave
 - light emitted by a point light source
 - r: distance from the light source
 - complex amplitude: $U(r) = \frac{A}{r} \exp(j[kr + \phi])$
 - locally resembles a plane
 in a big distance
 - rays: "directions perpendicular to wavefronts"

amplitude

wavefronts: surfaces of constant phase

phase

Computer generated display holography (Eurographics 2017)

slide 52 / 126

- plane wave
 - light emitted by a point light source located in a direction -n far away, |n| = 1
 - n is a direction of light propagation and the normal vector of the wavefronts
 - point in space $\mathbf{x} = (x, y, z)$
 - wavefront plane equation

 $\mathbf{n} \cdot \mathbf{x} = const.$

- wavefronts separation λ
- complex amplitude: $U(\mathbf{x}) = A \exp(j[k\mathbf{n} \cdot \mathbf{x} + \phi])$

Really unoptimized Matlab (Octave) code Initialization

0.02 m 0.2 m lambda = 532e-9;scene composed hologramHeight = 2e-3;of three 7 hologramWidth = 2e-3; points hologramZ = 0;corr Delta = 10e-6;samplesX = hologramWidth / Delta; samplesY = hologramHeight / Delta; san distan cornerX = -hologramWidth / 2; = 10 µm, cornerY = -hologramHeight / 2; points -0.2;= [0. 0, -hologramWidth/4,-hologramHeight/4, -0.2; hologramWidth/4, hologramHeight/4, -0.22];

Object wave calculation

```
k = 2*pi/lambda;
objectWave = zeros(samplesY, samplesX);
for s = 1:rows(points)
  for column = 1:samplesX
   for row = 1:samplesY
     x = (column-1) * Delta + cornerX;
     y = (row-1) * Delta + cornerY;
                         - points(s, 1))^2 ...
      r = sqrt((x)
            + (y - points(s, 2))^2 ...
            + (hologramZ - points(s, 3))^2);
      objectWave(row,column) += exp(li*k*r) / r;
   end
 end
end
```


slide 56 / 126

Reference wave calculation

```
wave
alpha = 90 * pi/180;
beta = 90.5 * pi/180;
                                                   Х
nX = cos(alpha); nY = cos(beta);
nZ = sqrt(1 - nX^2 - nY^2);
                                                   7
refAmplitude = max(max(abs(objectWave)));
referenceWave = zeros(samplesY, samplesX);
for column = 1:samplesX
  for row = 1:samplesY
    x = (column-1) * Delta + cornerX;
    y = (row-1) * Delta + cornerY;
    referenceWave(row,column) = refAmplitude * ...
            exp(1i*k*(x*nX + y*nY + hologramZ*nZ));
 end
```

end

reference

Hologram calculation

optField = objectWave + referenceWave; hologram = optField .* conj(optField);

Computer generated display holography (Eurographics 2017)

slide 59 / 126

Computer generated hologram of a 3-D scene

6144 × 6144 pixels Size 4,3 × 4,3 cm² (resolution 3600 dpi ~ pixel size 7 μm)

Computer generated display holography (Eurographics 2017)

How to "print" a calculated hologram?

- electron beam lithography very expensive
 - 0.05 μ m details \Rightarrow diffraction up to 90°
 - size up to ~ 5 × 5 cm², recording 1 mm²/min
- laser lithography expensive
 - 1 μ m details \Rightarrow diffraction up to 20°
 - size up to ~ 20 × 20 cm², recording 4 mm²/min

Hologram by K. Matsushima

left view

central view

right view

Computer generated display holography (Eurographics 2017)

- imagesetter
 - 10 µm details ⇒ diffraction up to 2°
 - price ~ 5 € per A4
- laser printer
 - − 100 µm details \Rightarrow diffraction up to 0.5°
- "holographic printers" do not usually print the calculated pattern

Hologram by I. Hanák, M. Janda

Electronic "holographic display"?

- microdisplays = spatial light modulators
- transmissive or reflective
- size up to 40 mm diagonal
- resolution up to 8K (7680 × 4320 pixels)
- pixel size down to $\sim 4 \ \mu m$
- usually LCD (liquid crystal display), DMD (digital micromirror device) or LCOS (liquid crystal on silicon)
- small size, small diffraction angle (up to 5°)
 - tiling, multiplexing, additional optics to improve performance

Numerical simulation of hologram reconstruction

- useful for evaluation purposes
- the second basic building block of advanced algorithms of computer generated display holography
- allows to observe the real image
- to simulate the virtual image, it is necessary to add a lens simulation
 (easy, but not covered in the tutorial)

(easy, but not covered in the tutorial)

Real image calculation

- illuminate the hologram "from behind"- each point of the hologram becomes a light source $U(x, y, z_{holo}) = hologram(x, y) \times U_{illum}(x, y, z_{holo})$
- place "a target screen" somewhere
- calculate light from the hologram on the target screen
- constructive interference creates the real image

- sum of spherical waves
 - phasor of a spherical wave $K(x, y, z) = A \exp(jkr) / r$ $r = [(x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2]^{1/2}$
 - each has its own amplitude A
 - their origins (x_c , y_c , z_c) are in the plane of the hologram, $z_c = z_{holo}$
 - the screen is usually parallel to the hologram in

$$Z = Z_{\text{target}}$$

• it is possible to use convolution $U(x, y, z_{target}) = U(x, y, z_{holo}) \otimes K(x, y, z_{holo} - z_{target})$

Computer generated display holography (Eurographics 2017)

kernel

• convolution calculation using the Fourier transform

 $U(x, y, z_{\text{screen}}) = \mathcal{F}^{-1} \{ \mathcal{F} \{ U(x, y, z_{\text{holo}}) \} \times \mathcal{F} \{ K(x, y, z_{\text{holo}} - z_{\text{target}}) \} \}$

- efficient numerical algorithm: the fast Fourier transform (FFT)
- convolution calculation using FFT requires some additional steps

to calculate T = S ⊗ K
S: source, M_x × M_y samples
T: target, N_x × N_y samples
K: kernel (spherical w. phasor), C_x × C_y samples

1. pick any
$$C_X \ge M_X + N_X - 1$$
,
 $C_Y \ge M_Y + N_Y - 1$

- 2. add zero samples to S to get size $C_X \times C_Y$ (zero padding)
- 3. calculate $C_X \times C_Y$ samples of K
- 4. calculate
 tmp = ifft2(fft2(padS) .* fft2(K))
- 5. $T = \text{first } N_X \times N_Y \text{ samples from tmp}$

Actual code for hologram propagation

propagZ = 200e-3;nitialization cX = 2*samplesX-1; cY = 2*samplesY-1;auxX = ((0:cX-1) - (samplesX-1)) * Delta;auxY = ((0:cY-1) - (samplesY-1)) * Delta;[auxXX, auxYY] = meshgrid(auxX, auxY); padS = zeros(cY, cX);padS(1:samplesY, 1:samplesX) = ... hologram .* conj(referenceWave); r = sqrt(auxXX.^2 + auxYY.^2 + propagZ^2); kernel = k*1i*propagZ*exp(1i*k*r) ./ r.^2; kernel = circshift(kernel, ... [-samplesY + 1, -samplesX + 1]); tmp = ifft2(fft2(padS) .* fft2(kernel)); target = tmp(1:samplesY, 1:samplesX);

slide 70 / 126

- strictly speaking, we should use a proper propagation kernel instead of spherical waves
- Rayleigh-Sommerfeld propagation kernel
 - derived from the Maxwell's equations

$$K_{RS}(x, y, z) = -\frac{1}{2\pi} \left(jk - \frac{1}{r} \right) \frac{z}{r} \xrightarrow{exp(jkr)}{r}$$

$$\xrightarrow{additional factor} \xrightarrow{spherical}{wave}$$

- Fresnel propagation kernel
 - follows from the Taylor approximation of r

$$K_{FS}(x, y, z) = -\frac{\exp(jkz)}{j\lambda z} \exp\left(jk\frac{x^2 + y^2}{2z}\right)$$

– nice numerical properties \Rightarrow often employed

Are the calculations correct?

- physical hologram observation note various artifacts:
 - blurry ghost images: unwanted diffraction orders
 - speckle
 noise:
 property
 of coherent
 Ilumination
 - of diffuse surfaces
 - unrealistic contrast: –
 weakness of the
 generation algorithm

- simulated hologram observation: note various artifacts:
 - speckle noise: physically correct
 - Oth diffraction order: weakness of the simulation setup, but physically correct
 - replicas of the image:
 error of the algorithm
- it is not easy for a beginner to distinguish errors in algorithm from a physical phenomenon

Aliasing error

difficult to recognize and fix for a beginner

(sampling distance 10 μ m, λ = 532 nm)

Computer generated display holography (Eurographics 2017)

slide 74 / 126

Local frequency

- $sin(2\pi fx) frequency f = \partial(fx) / \partial x$
- the most oscillatory part of $K_{RS}(x, y, z)$: $\exp(j 2\pi r/\lambda) = \exp(j 2\pi g)$ $r = (x^2 + y^2 + z^2)^{1/2}$
- by analogy: local frequency

$$If_{X} = \frac{\partial g}{\partial x} = \frac{1}{\lambda} \frac{\partial r}{\partial x} = \frac{x}{\lambda r} \qquad If_{Y} = \frac{\partial g}{\partial y} = \frac{1}{\lambda} \frac{\partial r}{\partial y} = \frac{y}{\lambda r}$$

- due to sampling theorem, it must hold $lf_X \le 0.5 \times \text{sampling frequency}$ (the same for lf_Y)
- big x, y or small z leads to high local frequency
- usually safe to set $K_{RS}(x, y, z) = 0$ at points where the local frequency is too high

Angular spectrum decomposition

• propagation using convolution:

$$U(x, y, z_{\text{screen}}) = \mathcal{F}^{-1} \{ \mathcal{F} \{ U(x, y, z_{\text{holo}}) \} \times \mathcal{F} \{ K(x, y, z_{\text{holo}} - z_{\text{target}}) \} \}$$

it holds

$$\mathcal{F}\{K_{RS}(x, y, z)\} = H_{RS}(f_{X}, f_{Y}, z) = \exp[j 2\pi z (\lambda^{-2} - f_{X}^{2} - f_{Y}^{2})^{1/2}]$$

- transfer function H_{RS} has low local frequency for small $z \Rightarrow$ allows propagation calculation for small z
- usually safe to set $H_{RS}(f_x, f_y, z) = 0$ if local frequency is too high
- also allows to calculate propagation between non-parallel planes

SELECTED BUILDING BLOCKS OF ADVANCED CGDH ALGORITHMS

Computer generated display holography (Eurographics 2017)

slide 77 / 126

Scene replacement with a point cloud

- extraordinary number of points needed
- each point illuminates the whole hologram
 ⇒ slow
- does not handle surface visibility
- easy parallelization \Rightarrow fast for thousands of points

Restricted area of contribution

- intermediate plane close to the point cloud
 - point contributes to a small area only \Rightarrow fast
- propagation of intermediate plane to the hologram
 ⇒ fast
- works well for shallow scenes only

Multiple intermediate planes

- propagation of a point to the nearest intermediate plane
- propagation of each intermediate plane to the hologram, summation of results

Look-up tables (LUT)

- pre-calculation of propagation from $(0, 0, z_0)$ to the plane $z = 0 \Rightarrow$ base patterns for many z_0
- propagation from (x_0, y_0, z_0) to the plane z = 0is a shifted base pattern
 - ⇒ "copy & paste" instead of the pattern calculation

Separable look-up tables

• Fresnel approximation of a spherical wave:

$$K_{FS}(x, y, z) = -\frac{\exp(jkz)}{j\lambda z} \exp(jk\frac{x^2}{2z}) \exp(jk\frac{y^2}{2z})$$

- separable
 - only 1-D patterns have to be pre-calculated: exp(jkx²/2z) and exp(jky²/2z)
 - look-up tables small (they are just 1-D)
- multiplication on the fly

Other primitive objects

- point \Rightarrow spherical wave
- line \Rightarrow cylindrical wave
- line segment ⇒
 "clipped cylindrical wave"
- triangle ⇒
 wave can be also written
 in the closed form
- problem: flat triangle
 ⇒ constant phase on the surface
 ⇒ emits light in one direction
 - \Rightarrow hard to simulate diffuse surfaces

spherical wave

cylindrical wave clipped on the top and the bottom of the line

Single billboard

- object replacement with a flat image (billboard)
- propagation of the billboard to the hologram
- hidden surface elimination solved by computer graphics when rendering the image
- reconstructed scene is not 3-D

Multiple billboards

- scene replacement with several billboards
- propagation $A \rightarrow H, B \rightarrow H, C \rightarrow H, ...,$ summation
- reconstructed scene is 3-D
- does not handle hidden surface elimination between billboards

Sweep propagation plane

- propagation $A \rightarrow B$, masking, $B \rightarrow C$, masking, ..., $C \rightarrow H$
- solves hidden surface elimination
- reconstructed scene is 3-D, but sliced (many billboards – better quality, slower)

Generalized sweep propagation plane

- scene split to rotated billboards
- optical rotation of billboard 1 to sweep plane 1 propagation $S_1 \rightarrow S_2$, rotation $S_2 \rightarrow B_2$, masking, rotation $B_2 \rightarrow S_2$, propagation $S_2 \rightarrow S_3$, ...

- natural solution for triangular meshes
 - every textured triangle is a billboard
- good hidden surface elimination
 - however, it has the same problems as the painter's algorithm
- some steps can be simplified for faster calculation
- allows to calculate high resolution holograms in reasonable time (~ 4 Gpixels, several hours)

Basic ray casting

- point cloud rendering enhanced with ray casting for visibility testing
- extremely slow

Billboards & ray casting

- scene decomposition to rectangular patches
- hologram decomposition to subholograms
- ray casting between billboards and subholograms only
- billboard \rightarrow subhologram propagation fast

Holographic stereogram

- for each subhologram
 - take a picture from its centre (i.e. record light intensity coming from various directions)
 - make a diffractive structure that replicates light
 rays can be done using one Fourier transform

Horizontal parallax only rainbow hologram

- the image should be visible from "a window" only
- hologram decomposition to subholograms ("slits")
- determine which points of the scene contribute to the subhologram
- calculate the subhologram

Hologram recording: subhologram A records light from a point A only.

Hologram reconstruction: both points can be seen in the window only

Hologram reconstruction with wrong (shorter) wavelength: image shifts, virtual window shifts ⇒ observer does not see the image

Hologram reconstruction with white light: many virtual windows

Computer generated display holography (Eurographics 2017)

slide 94 / 126

center left view: perspective changes

top right view

no change in perspective

center right view

no change in perspective

bottom right view

Classical rainbow hologram by Š. Němcová

Computer generated display holography (Eurographics 2017)

slide 95 / 126

Diffraction specific algorithms

- try to make a diffractive structure that creates desired light distribution in the target distance
- for example iterative:
 - 1. initialize "hologram" H to random numbers
 - 2. propagate to target distance: H' = propag(H)
 - 3. compare with desired light distribution L:
 if H' ≈ L then DONE
 - 4. modify H' so that it is closer to L
 - 5. propagate back to the plane of the hologram:
 H = backpropag(H')
 - 6. apply constraints to H (e.g. 0≤transmittance≤1)
 - 7. go to step 2

HOLOGRAPHIC DISPLAYS

Computer generated display holography (Eurographics 2017)

slide 97 / 126

Space-bandwidth product

- a hologram (diffraction pattern)
 - spatial extent (width × height)
 - frequency range f_{MIN} to f_{MAX} in X/Y axis
 - frequency f is related to diffraction angle θ : sin $\theta = \lambda f$
- for pixelated holographic displays:
 spatial extent W × frequency range F

= $2 \times \text{number of samples } N$

(space-bandwidth product)

- example: $\lambda = 0.5 \ \mu m$, $\theta = 30^{\circ}$, size $100 \times 100 \ mm^2$ $N = 2W \sin(\theta) / \lambda \implies 200000 \times 200000$ samples
- contemporary 8K displays: 8000 × 4000 samples

- space-bandwidth product constant:
 - either large display, narrow viewing zone
 - or small display,
 wide viewing zone

- use a lens to enlarge the angle?
 ⇒ virtual image of the display gets smaller
- space-bandwidth product is hard to cheat!

slide 100 / 126

SLM based holographic display systems

- multiple spatial light modulators
 - planar layout does not increase viewing angle
 - circular layout increases horizontal view. angle
 - additional optical elements (e.g. one way mirror) for seamless stitching

- time multiplexing
 - sequential *light* illumination of the spatial light
 modulator (SLM)
 from various directions
 - beam steering (horizontal, vertical or both)

- speckle field
 - diffuser changes phase randomly at each point
 - ⇒ display size = diffuser size (good), viewing angle = diffusing angle (very good), obscures image due to phase breakup (bad)
 - phase breakup can be compensated at SLM
 - ⇒ big display, big viewing angle
 - trades space-bandwidth product for contrast

Modulation types

- original holography: amplitude modulation (transmittance of a point of a hologram ∈ [0, 1])
 - calculate phasors U_{object} , $U_{\text{reference}}$
 - transmittance $\propto |U_{\text{object}} + U_{\text{reference}}|^2$
 - attenuates light \Rightarrow low brightness
- bipolar intensity: alternative amplitude modulation
 - transmittance $\propto \operatorname{Re}\{U_{\operatorname{object}} U_{\operatorname{reference}}^*\}$
 - does not contain fringes that form unwanted diffraction

- bleached holograms: phase modulation (transmittance of a point of a hologram = exp(jφ))
 - $I = |U_{\text{object}} + U_{\text{reference}}|^2$ transmittance $\propto \exp(jI)$
 - much brighter than amplitude hologram, more noise
- kinoform: alternative phase modulation
 - calculate the object wave only (complex values)
 - set amplitude = 1, keep phase transmittance = U_{object} / $|U_{object}|$
 - \Rightarrow phase only modulation
 - similar properties as bleached holograms
 - physically (almost) impossible, calculation easy

- full complex modulation
 - both amplitude and phase modulation at once
 - "recording" does not require reference wave
 - transmittance = $U_{\text{object}} / U_{\text{illumination}}$
 - perfect image exact copy of the object wave
 - we don't know how to make it well

- phase detour
 - early approximation of the complex modulation
 - − width of the slit modulates light intensity
 ⇒ amplitude modulation
 - position of the slit picks light with proper phase \Rightarrow phase modulation
 - dim image, *incident light* requires very
 high resolution
 - other, more advanced versions exist

Acousto-optical modulator

- does not display the hologram "pixel by pixel"
- displays an elementary diffractive grating at once
- incident sound wave \Rightarrow frequencies in the grating
- limited to 1-D gratings
 ⇒ suitable for horizontal parallax only displays

True holographic modulator

- elementary diffraction pattern physically recorded hologram
- recording medium erasable \Rightarrow holographic display
- recording medium permanent

 \Rightarrow holographic printer

transmission geometry

reflection geometry

Computer generated display holography (Eurographics 2017)

slide 109 / 126

- transmission geometry: requires back illumination
 more suitable for an enclosed device
- reflection geometry: requires front illumination
 - more suitable for prints
 - allows white light illumination and full colour reconstruction

Computer generated display holography (Eurographics 2017)

slide 110 / 126

examples of alternative hologram

Computer generated display holography (Eurographics 2017)

slide 111 / 126

Holographic displays in general

- pros:
 - offer great 3-D experience, hardly distinguishable from reality
- cons:
 - require high space-bandwidth product
 - hologram calculation is slow
 - require coherent light,
 which causes speckle noise
 - technology for both display and calculation is far from optimal

COMPETING TECHNOLOGIES

Computer generated display holography (Eurographics 2017)

slide 113 / 126

Light field displays

- parallax barrier displays, lenticular displays
 - established technology
 - problematic viewing outside viewing zones

display with interlaced images

Computer generated display holography (Eurographics 2017)

slide 114 / 126

- idea of "light field" L(x, n): light ray from a point x (usually in z = 0) in a direction n has luminance L(x, n)
 ⇒ light field is 4-D (at least)
- based on ray optics
 - very intuitive
 - easy to define light field that cannot exist (e.g. a single ray)
 - does not work well with small distances and angles that are required for high fidelity display
- it is not clear how to sample L(x, n)
 ⇒ limited resolution and depth of field

- multilayer (tensor) displays
 - attempts to approximate light field directly
 - ray 1 (luminance L₁) crosses A', B, C
 ray 2 (luminance L₂) crosses A, B, C'

system of equations

- how to set transparency at points A, B, C, …?
 ⇒ solve the system of equations
- combines well with other technologies, affordable
- solution is only approximate
 - ⇒ ghosting

. . .

Multiplane displays

- decomposition of a scene to planar slices
- display slices on real or virtual places in space
- no vergence-accommodation conflict
- problems with hidden surface elimination
 ⇒ usually requires user tracking

Near eye display

- for augmented / virtual reality
- requires precise head tracking and fast response
- only small display area required
- should provide accommodation eye response
 - natural with holography
 - possible with light field displays

RECOMMENDED READING

Computer generated display holography (Eurographics 2017)

slide 119 / 126

General holography

• Holographic Imaging

S. A. Benton, V. M. Bove Jr.; Wiley 2008

excellent introduction to general holography and display holography, touches digital holography a bit

• Optical Holography

R. J. Collier, C. B. Burckhardt, L. H. Lin; Academic Press 1971 classic textbook, holography in depth; maybe not suitable as a first book on holography you read, but definitely worth reading after gaining some experience

Display holography

• Three-Dimensional Imaging Techniques

T. Okoshi; Academic Press 1976 considerations on 3-D imaging, both holography and integral imaging; still very relevant book

• Practical Holography

G. Saxby, S. Zacharovas; CRC Press 2015 **a must for anyone making classical display holograms, also covers holographic printers**

Ultra-Realistic Imaging

H. Bjelkhagen, D. Brotherton-Ratcliffe; CRC Press 2013 full colour holography and holographic printing in depth

Fourier optics

Introduction to Fourier Optics

J. W. Goodman; Roberts and Company Publishers 2004 classic textbook, diffraction and related phenomena including holography in (reasonable) depth; every digital holographer should have it at hand

Computational Fourier Optics: A MATLAB Tutorial

David G. Voelz; SPIE Press 2011

nice and short introduction to the topic, works well as a supplement to the Goodman's book

Digital holography

• Digital Holography

P. Picart, J.-C. Li; Wiley-ISTE 2012

• Digital Holography and Digital Image Processing

L. Yaroslavsky; Springer 2004

• Digital Holography and Wavefront Sensing

U. Schnars, C. Falldorf, J. Watson, W. Jüptner; Springer 2015

• Introduction to Modern Digital Holography

T.-C. Poon; Cambridge University Press 2014

each book contains general introduction, then focuses on different aspects and applications

Journals

- Optics Express, Applied Optics, Optics Letters
 most CGDH articles is published here nowadays
- Journal of the Optical Society of America A, Optical Engineering, Optics Communications, Journal of Display Technology
 - worth checking regularly

Conferences

- International Symposium on Display Holography
 - mostly display holography, art and technology, both classical and digital
- Practical Holography (SPIE)
 - art and technology, both classical and digital
- Digital Holography & 3-D Imaging (OSA)
 - general digital holography, 3-D imaging
- The Holography Conference (Reconnaissance)
 - mostly security holography and packaging

FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CENTRE OF COMPUTER GRAPHICS AND VISUALIZATION

PLZEŇ CZECH REPUBLIC

http://graphics.zcu.cz

Thank you for your attention **QUESTIONS?**

download example scripts and course notes: http://holo.zcu.cz

Computer generated display holography

Petr Lobaz (lobaz@kiv.zcu.cz) Faculty of Applied Sciences, University of West Bohemia Czech Republic

This work was supported by Ministry of Education, Youth, and Sport of Czech Republic – University spec. research – 1311