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Abstract. A method of rapid and robust calculation of radially symmetric functions is
presented. It is based on observation that f(x, y, z) = f ′(ρ, z), where ρ = (x2 + y2)1/2. The
method stores values of f ′ and ρ in look-up tables. It can be used e.g for fast computer generated
hologram calculation. It is suitable for CPU, GPU or hardware implementation.

1. Introduction
In computer generated holography and digital holography, it is often necessary to evaluate
radially symmetric functions of two variables. They include most notably convolution kernels
for free space light propagation calculation, such as Rayleigh-Sommerfeld or Fresnel convolution
kernels, a free space transfer function in angular spectrum propagation method or a lens phase
shift function [1]. Many researchers try to accelerate their evaluation, as it takes significant
time in the whole calculation of e.g. a computer generated hologram of a 3-D scene or in light
propagation simulations.

There are several approaches to the acceleration of such evaluation. First of all, a moderately
complicated formula, such as the Rayleigh-Sommerfeld convolution kernel

KRS(x, y; z0) = − 1

2π

(
jk − 1

r

)
exp(jkr)

r

z0
r

r =
√
x2 + y2 + z20

(1)

can be approximated by a much simpler formula, such as the Fresnel approximation [1]

KFresnel(x, y; z0) = exp

(
jk
x2 + y2

2z0

)
exp(jkz0)

jλz0
. (2)

These convolution kernels are used to calculate monochromatic light propagation from a plane
z = 0 to a plane z = z0; λ stands for a wavelength, k = 2π/λ is a wave number, x and y are
transverse spatial coordinates and j is the imaginary constant (j2 = −1). This approach not only
accelerates the function evaluation, but moreover it can improve its numerical behaviour [2]. On
the other hand, of course, any approximation brings an approximation error, and must be used
with caution.
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A completely different acceleration method just precalculates the function for every x, y and
z0 that will be used in subsequent calculations and stores the values in a 3-D look-up table
(LUT); due to radial symmetry in xy coordinates, only one quadrant or even octant must be
actually saved in the look-up table [3, 4]. Despite of this enhancement, memory requirements
of the method are still excessive as it is often necessary to precalculate the function for many
z0 values and discretization of x and y coordinates must be usually very fine. This is due to
the fact that the evaluated function usually contains high spatial frequencies; some researchers
reduce the look-up table size by taking into account that the highest spatial frequency usually
depends on z0 [5]. Naturally, the method also does not specify how to precalculate the look-up
table efficiently.

One way how to reduce memory requirements is based on separability of certain functions.
For example, the Fresnel convolution kernel (2) can be rewritten as

KFresnel(x, y; z0) =

[
exp

(
jkx2

2z0

)√
exp(jkz0)

jλz0

]
×

[
exp

(
jky2

2z0

)√
exp(jkz0)

jλz0

]
.

It is easy to see that one does not need a 3-D look-up table; it is sufficient to create one 2-D
look-up table for each of the two factors in the equation above, as each factor depends on just
two variables [6, 7, 8]. Moreover, if the extents and the sampling distances are the same for x
and y coordinates, just one 2-D look-up table is necessary. Naturally, this technique can be used
only if the function to be evaluated is separable.

Some researchers try to simplify function evaluation by using recurrence formulas, e.g. [9, 10],
i.e. they look for simple formulas how to calculate K(x0+εx, y0+εy; z0) using value K(x0, y0; z0)
for small εx and εy. It should be noted that influence of computer arithmetic rounding errors
is usually poorly analysed and that recurrence formulas tend to produce a sequential computer
code rather than a parallel one.

An original approach to evaluation of radially symmetric function K is based on computer
graphics algorithm for circle rasterization [11]; this method creates a 2-D array of values
K(m∆xy, n∆xy; z0), where ∆xy is a sampling distance in transverse coordinates and integer
indices m, n span the area of interest. The method calculates K(m∆xy, 0; z0) in a common way
and this value is subsequently “copied” to samples at the same distance from the point (0, 0; z0).
The biggest drawback of the method is its complicated memory access, thus memory caching
cannot be used efficiently. Recently, authors proposed a method that overcomes this difficulty
using recurrence formulas [12].

Parts of the method we are going to analyse in following sections were independently described
by other authors [12, 13, 14]. We will discuss these references after we describe the basic idea
of the method in Sec. 2; in short, the method is also based on a pair of 2-D look-up tables
and it can be easily used for any function that is radially symmetric in the xy plane. Main
contributions of this article are introduction of a new type of a look-up table (we will call it
“rhoLUT”) and a detailed analysis of interpolation in look-up tables to further reduce their size;
it will be discussed mainly in Sec. 3 and 4. Sec. 5 adds details about the second type of look-up
table (“waveLUT”) used by the method. In Sec. 6 we discuss results of the method and Sec. 7
concludes the article. Some details of the derivations, results analysis etc. were omitted in this
text; they can be found in the supplementary material provided on request by the author.

2. Principle of the method
We explain the method on a basic task in digital holography: monochromatic light propagation
in free space. Let us calculate propagation of light from the plane z = 0 to the plane z = z0
using the Rayleigh-Sommerfeld convolution, i.e.

U(x, y; z0) = U(x, y; 0)⊗KRS(x, y; z0),
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where U(x, y, z) is a complex amplitude (phasor) of light at a point (x, y, z), ⊗ stands for
convolution and KRS(x, y; z0) is the convolution kernel defined by Eq. (1). In the discrete
calculation, x and y coordinates have to be sampled with sampling period ∆xy in finite areas of
planes z = 0 and z = z0. Let us assume for simplicity that both areas in z = 0 and z = z0 share
the same square shape of the size M∆xy ×M∆xy, where M is an integer number of samples. If
we want to employ the fast Fourier transform to calculate the discrete convolution, the kernel
must be sampled by at least (2M −1)× (2M −1) samples with the same sampling distance ∆xy

[15]. Let us further assume that the centres of the square areas in z = 0 and z = z0 are located at
x = 0, y = 0. Then we need to evaluate KRS(m∆xy, n∆xy; z0) for all integers m ∈ [1−M,M−1],
n ∈ [1−M,M − 1].

It is easy to see that KRS(x, y; z0) depends in fact on r and z0, where z0 is constant and
r = (x2 + y2 + z20)1/2 in this example. Moreover, we can define ρ(x, y) = (x2 + y2)1/2 and write
r = (ρ2 + z20)1/2.

To calculate KRS(m∆xy, n∆xy; z0), it is then necessary to evaluate ρ = ∆xy(m
2 +n2)1/2 and

KRS(ρ; z0). It is possible to calculate ρ directly or using a 2-D look-up table; we call this look-up
table “rhoLUT”; its construction is simple, as x and y are sampled uniformly. In this particular
case, it is even possible to store just one quarter of necessary values, i.e. just for m ∈ [0,M − 1],
n ∈ [0,M − 1].

A simple look-up table cannot be constructed for KRS(ρ; z0), as the set of discrete values
of ρ does not have uniform structure. Instead, we must rely on some interpolation scheme. If
we assume that interpolation is sufficiently precise, we can indeed build a look-up table with
values KRS(q∆w; z0) where ∆w is sufficiently small to capture the structure of KRS and integer
index q spans all possible values of ρ, i.e. q ∈ [0, dM

√
2∆xy/∆we], where d·e is the “round up”

(ceil) operation. We denote this look-up table “waveLUT” because it actually captures the wave
structure of light.

Even if we calculate KRS(m∆xy, n∆xy; z0) for single z0 and all m, n, the above mentioned
procedure is advantageous. The calculation of ρ is usually simple and must be done for all m,
n anyway, i.e. for (2M − 1)2 samples. The calculation of KRS(m∆xy, n∆xy; z0) is much more

involved, but due to waveLUT it is necessary to evaluate it just for M
√

2∆xy/∆w samples of ρ,
which is usually a much smaller number. We assume that look-up operations and interpolations
are fast, which is usually the case.

It is also indeed possible to incorporate some interpolation to rhoLUT, i.e. to precalculate
just values ρ(r, s) = ∆ρ(r

2 + s2)1/2 for r, s in [0, dM∆xy/∆ρe], where ∆ρ ≥ ∆xy is sufficiently
small. In exchange of one more interpolation we get much smaller rhoLUT table. The scheme of
calculation is depicted in Fig. 1.

The authors of [14] used a very similar method. Instead of rhoLUT, they calculated a look-up
table directly for r = (x2 + y2 + z20), so they could not reuse it for any other z0 coordinate as in
the case of rhoLUT. Moreover, sampling distance of this table was set to ∆xy, and thus keeping
this table for every z0 would be memory inefficient.

The authors of [13] use the table we call waveLUT here (they call it BPP phase) and although
they in fact use rhoLUT as well (due to Matlab style of matrix manipulation, see PFT distance
if Fig. 4 of [13]), they do not discuss it explicitly, nor do they investigate its influence.

The authors of [12] use waveLUT as well, but instead of rhoLUT, they use recurrence formulas
to find values of ρ. They also do not discuss the influence of interpolation on calculation precision.

3. Introduction of the rhoLUT
The aim of the rhoLUT is to replace the calculation of ρ(x, y) = (x2 + y2)1/2, x ∈ [0,M∆xy],
y ∈ [0,M∆xy], by a look-up operation, optionally followed by interpolations. Let us define it as
a 2-D array

rhoLUT[m,n] = ∆ρ

√
m2 + n2
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Figure 1. Calculation of radially symmetric function KRS(x, y; z0) using 2-D look-up tables
rhoLUT and waveLUT. Complex value (a + bj) in the waveLUT is displayed as a RGB color
[a, b, b], where a and b are scaled to fit 0–255 range.

for integer indices m, n in [0, dM
√

2∆xy/∆ρe]. It is naturally possible to generalize the rhoLUT
for other index or xy range, but we want to keep the analysis simple.

First of all, we should ask if such a look-up table is practical. In a general computational
environment, such as a modern CPU, it depends on other circumstances. Floating point
operations are provided here with sufficient precision (usually IEEE 754 double precision or
better) and are quite fast; a large look-up table requiring random access to the main memory
may suffer from high traffic on the bus. On the other hand, clever caching and small look-up
table can easily outperform direct calculation, as especially square root operation is significantly
slower than memory access.

Once we move towards more special architectures, such as GPUs or even specially designed
FPGAs, reasons to use look-up table become stronger. Architecutures designed for massively
parallell computing tend to keep computational cores as simple as possible. This leads to both
limited instruction set and limited precision. Direct calculation forces every core to have addition,
multiplication and square root operations; look-up table approach requires just memory access
plus addition and multiplication for interpolations. Limited precision is even more severe –
it is easy to see that calculation of

√
x2 leads to loss of about half of mantissa bits. Single

precision calculation (mantissa length 24 bits) is thus at the edge of applicability for wave optics
calculations [2]; lower precision arithmetic such as half precision is out of the question. Contrary
to direct ρ calculation, a look-up table precalculated in a high precision environment can be
easily used in limited precision enviromnemt.

Finally, as rhoLUT implementation is very easy, it is often possible to implement both direct
calculation and look-up table and to choose the faster approach either in advance or at runtime.
In conclusion, it is advantageous to implement rhoLUT.

Let us now examine the rhoLUT details – its sampling (or size) and the interpolation of
values.

In the simplest case, sampling distance of the rhoLUT equals sampling distance in x, y
coordinates, i.e. ∆ρ = ∆xy, and ρ calculation for x = m∆xy, y = n∆xy is trivial:

ρC(x, y) = rhoLUT
[

round(|x|/∆ρ), round(|y|/∆ρ)
]

= rhoLUT
[
|m|, |n|

]
.
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We can indeed use the same equation even if ∆ρ 6= ∆xy; now, ρ(x, y) is approximated by
a piecewise constant (“staircase”) function ρC(x, y). It is easy to see that the approximation
error is at most ∆ρ

√
2/2 and the structure of the error is the same in the whole xy plane. This

observation is important: in the next step, we are going to use ρ as an index to the waveLUT.
However, local frequency of the function sampled by the waveLUT, e.g. KRS(ρ; z0), usually
grows as ρ → ∞; a small error in ρ will be thus magnified for big x, y. Piecewise constant
approximation must be therefore used with the utmost caution.

As ρ(x, 0) = |x|, it follows that the linear interpolation between rhoLUT values gives exact
results for y = 0. We should then expect that in a general case, bilinear interpolation should
give quite precise results:

ρB(x, y) = (1− ix)(1− iy)ρ00 + (1− ix)iyρ01 + ix(1− iy)ρ10 + ixiyρ11,

ix =
|x|
∆ρ
−
⌊
|x|
∆ρ

⌋
, iy =

|y|
∆ρ
−
⌊
|y|
∆ρ

⌋
,

ρst = rhoLUT
[
b|x|/∆ρc+ s, b|y|/∆ρc+ t

]
.

It can be easily found that the approximation error ρB(x, y) − ρ(x, y) vanishes for x → ∞,
y → ∞, and its maximum is ∆ρ(2 −

√
2)/4 ≈ 0.146∆ρ; the maximum error is located at

(x, y) = (∆ρ/2,∆ρ/2), see Fig. 2.
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Figure 2. Visualization of ρB(x, y) − ρ(x, y), i.e. the error introduced by the rhoLUT with
bilinear interpolation. Left graph shows error vanishing, right graph shows that maximum error
is located at (x, y) = (∆ρ/2,∆ρ/2). Notice there is indeed no error for x, y being integer multiples
of ∆ρ.

4. Sampling of the rhoLUT
To select a small enough sampling distance ∆ρ, it is not sufficient to examine error ρB(x, y) −
ρ(x, y) alone – we need to take into account that approximate value ρB is used in subsequent
calculations. Let us assume that we are going to calculate KRS(ρB; z0) directly, without
waveLUT. Effects of waveLUT approximation error will be discussed afterwards.

There are at least two ways how to analyze effect of error in ρ approximation. The first one
assumes that the error of ρ is multiplied by the local frequency of KRS(ρ; z0); let us explain why.
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Local frequency lfRS(ρ; z0) is defined as a first derivative of the argument of the high frequency
component of KRS(ρ; z0) [1]:

lfRS(ρ0; z0) =
∂

∂ρ

r

λ

∣∣∣∣
ρ=ρ0

=
∂

∂ρ

√
ρ2 + z20
λ

∣∣∣∣∣
ρ=ρ0

=
ρ0

λ
√
ρ20 + z20

. (3)

It tells us how many cycles per unit length can be found in the vicinity of ρ0. Thus, unit error
in ρ results in phase change lfRS(ρ; z0) of KRS(ρ; z0). It is therefore necessary to analyze the
function [ρB(x, y)− ρ(x, y)]× lfRS(ρ(x, y); z0).

The second way leads to the same results and is perhaps more intuitive; let us derive optimal
∆ρ in this way. Here, only the main steps of the derivation are presented; please contact the
author for supplementary material with full derivation and reasoning.

The evaluation of KRS as defined in Eq. (1) depends on r(ρ, z0) = (ρ2 +z20)1/2. If we compare
r evaluated with exact ρ and with its approximation ρB (using bilinear approximation), we can
observe following facts (see Fig. 3):

• The difference r
(
ρB(x, y), z0

)
− r
(
ρ(x, y), z0

)
approaches 0 as ρ(x, y) → ∞. However, the

error decreases quite slowly for ρ ≈ 0. As the most sensitive term of KRS is exp(j2πr/λ),
we can conclude that the overall error of KRS also vanishes.

• The biggest error can be found in the vicinity of (x, y) = (0, 0). Moreover, maximum error
for 0 < x < ∆ρ, 0 < y < ∆ρ is either the global maximum of the error, or it is very close to
the maximum.

• Although the error of ρ is maximal at (x, y) = (∆ρ/2,∆ρ/2), the error of r is maximal at
a different point. However, the error of r at (x, y) = (∆ρ/2,∆ρ/2) is a rough approximate
(≈ 85%) of the maximum error.

We can thus define estimate of the maximum error of r when using the rhoLUT with bilinear
interpolation as

maxRErr(∆ρ, z0) = 1.2

{
r

[
ρB

(
∆ρ

2
,
∆ρ

2

)
, z0

]
− r

[
ρ

(
∆ρ

2
,
∆ρ

2

)
, z0

]}
, (4)

where factor 1.2 reflects the observation that the error for (x, y) = (∆ρ/2,∆ρ/2) is approximately
85% of the maximum. Although it is possible to analyze the error more rigorously, in numerical
testing we have found that this approximation works well (see Sec. 6) and the factor 1.2 being
slightly higher than 1/0.85 leads to a slightly pessimistic error estimate.

It can be easily seen in Fig. 4 that in the log-log graph, maxRErr can be approximated by
a line for a wide range of useful errors and ∆ρ. Please note that r is divided by λ in Eq. (1),
and thus an acceptable error must be much lower than λ. For convenience, there is a thick
dashed horizontal line in Fig. 4 at maxRErr = 1 µm, i.e. any acceptable error for visible light
calculations must be well below this line.

The linear approximation in a log-log graph is defined as log(maxRErr) ≈ κ log(∆ρ) + ξ,
where κ is a slope and ξ is an intercept. It is easy to measure that κ ≈ 1.9998 for a wide range of
common z0 and acceptable maxRErr. It is also clear that ξ depends on z0 and this dependence
is also linear in the log-log graph: ξ = ξ0 + ξ1 log(z0), where ξ0 is a value for z0 = 1 and ξ1
is the dependency factor. It can be easily measured from the graph that ξ0 ≈ −1.9886 and
ξ1 ≈ −0.9999.

The linear approximation allows us to find optimal ∆ρ opt for a chosen maxRErr:

∆ρ opt(maxRErr, z0) ≈ exp

(
1

κ
log

[
maxRErr

(z0)ξ1 exp(ξ0)

])
for

κ ≈ +1.9998

ξ0 ≈ −1.9886

ξ1 ≈ −0.9999

(5)
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Figure 3. Visualization of r(ρB(x, y), z0)− r(ρ(x, y), z0), i.e. the error introduced in evaluation
of r = (ρ2 + z20)1/2 by a rhoLUT with bilinear interpolation. The top graph shows error
vanishing, the bottom left shows the error structure, the bottom right shows that error at
(x, y) = (∆ρ/2,∆ρ/2) is a rough approximation of the maximum error. Notice that each graph
has different scale .
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Figure 4. Approximate value of maximum error in calculation of r using rhoLUT with bilinear
approximation. Useful part of the curves is below the thick horizontal line for visible light. Please
note it is a log-log graph and both axes are in meters.

Example values of ∆ρ opt for λ = 500 nm can be found in Fig. 5. For example, propagation
to z0 = 1 m can be calculated with rhoLUT prepared with ∆ρ opt = 0.19 mm if we allow error
in r calculation λ/100, which is usually acceptable. If the sizes of the areas in z = 0 and z = z0
are 50 × 50 mm, the rhoLUT size should be 264 × 264 samples. For maximum error λ/10, we
set ∆ρ opt = 0.6 mm and the rhoLUT size is just 84× 84 samples.

We can approximate further to get some insight to Eq. (5). As κ ≈ 2, ξ0 ≈ −2 and ξ1 ≈ −1,
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Figure 5. Optimal sampling distance ∆ρ opt for the rhoLUT calculated using Eq. (5) for
λ = 500 nm. Please note it is a log-log graph and both axes are in meters.

we can approximate Eq. (5) by

∆ρ opt(maxRErr, z0) ≈ 2.72
√
z0 maxRErr. (6)

We know that for the fixed extent of ρ, the rhoLUT size is proportional to 1/∆2
ρ (it is a

2-D look-up table). Therefore Eq. (5) actually tells that the rhoLUT size is inversely related
to maxRErr and z0. It is also worth noting that Eq. (6) can be easily derived from the Taylor
expansion of Eq. (4) with respect to ∆ρ; in this case, the constant factor changes to ≈ 2.70.

5. The waveLUT
Once we have the approximate ρ value, we can calculate KRS(ρ; z0) using the waveLUT. We
should set small enough ∆w and define

waveLUT[q; z0] = KRS(q∆w; z0).

where q is an integer index. Again, for a particular value ρ0 we can estimate the value of
KRS(ρ0; z0) using piecewise constant approximation

KRS C(ρ0; z0) = waveLUT[round(ρ0/∆w); z0] (7)

or e.g. piecewise linear approximation

KRS L(ρ0; z0) = (1− i)waveLUT
[
bρ0/∆wc; z0

]
+ iwaveLUT

[
bρ0/∆wc+ 1; z0

]
,

i =
ρ0
∆w
−
⌊
ρ0
∆w

⌋
.

(8)

We should discuss following topics: how to deal with interpolation of z0, how to set ∆w, and
what interpolation to use in the ρ direction.

In many applications, only a few values of z0 are necessary or the value of z0 is not critical. For
example, in computer generated holography, it is often necessary to calculate the propagation
of light from a point light source located at (x0, y0, z0) to a plane z = 0, and it is acceptable to
quantize z0 quite coarsely. In that case, it is possible to choose a suitable quantization step ∆z

and to precalculate the waveLUT for every integer multiple of ∆z in a given range [zmin, zmax].
It is also possible to set ∆z as an integer multiple of λ. Now, the waveLUT looks like its

visualization in Fig. 1 – notice that the structure in the vertical (z) direction is very simple.

Preprint. Presented at 10th International Symposium on Display Holography (ISDH 2015). Proceedings in preparation. 8



It should be possible to introduce some form of interpolation in this direction, but we will not
discuss it here.

The extent of the waveLUT in the ρ direction is easy to set. Maximum and minimum values of
ρ are given by the rhoLUT (or the geometry of the problem). For a given maximum value ρmax,
we can calculate the local frequency lfRS(ρmax; z0) using Eq. (3) and set ∆w < 1/[2 lfRS(ρmax; z0)]
to have at least two samples per cycle of KRS(ρ; z0).

Our experiments show that good results are obtained with 8 samples per cycle, i.e.

∆w opt = 1/[8 lfRS(ρmax; z0)] (9)

and linear interpolation according to Eq. (8). Piecewise constant approximation (7) leads to
much higher phase quantization and subsequently increases noise in the optical field. However,
provided that ρ is precise enough, phase quantization itself does not destroy properties of the
optical field [2]. We have also tested other interpolation schemes (cubic and various windowed
sinc), but experiments show that for our purposes (computer generated holography), slightly
higher accuracy of the result does not justify slower calculation.

6. Results
We have implemented several tests to measure look-up tables performance, both in speed and
in precision. Here we present results of CPU tests; details on GPU implementation are in
preparation and will be published elsewhere. Please note that this section presents just summary
of the results; full details are available on request.

As shown in [2], direct calculation of highly oscillatory functions such as KRS is prone to
numerical error in single precision calculations. In short, problems appear in calculation of
cos[2π(x2 + y2 + z20)1/2/λ] for visible light and z0 ≈ 1 m or bigger. No problems appeared
when using a rhoLUT and a waveLUT precalculated in double precision. Direct calculation of
ρ (i.e. omission of a rhoLUT) is possible for on-axis propagation calculations; in off-axis cases,
calculation of ρ = (x2 + y2)1/2 in single precision is prone to numerical errors as well. See Fig. 6
for an example of a correct and incorrect kernel calculation.

On-axis propagation kernel, 
�0 = 2 m, �� extent 10 mm × 10 mm

Part of off-axis propagation kernel (45°), 
�0 = 2 m, �� extent 5 �m × 5 �m

single precision correct calculation single precision correct calculation

Figure 6. Examples of problems in calculation of KRS. “Single precision” shows influence of
rounding errors in IEEE 754 single precision arithmetic, “correct calculation” shows a correct
result calculated in double precision. Calculation using look-up tables leads to the same correct
results. Color coding of complex values is the same as in Fig. 1.

Tests of ∆ρ and ∆w selection according to Eqs. (5) and (9) confirmed theoretical analysis.
For example, if we decide to accept error maxRErr = λ/100 in calculation of r, ∆ρ calculated
using Eq. (5) and bilinear interpolation in the rhoLUT leads to an actual error at most λ/103,
i.e. 97% of the desired value. Other values of maxRErr lead to similar numbers.
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We have also measured actual error of calculation of KRS. It was calculated as the maximum
or the average value of |K − K ′|/Kmax, where K is the value of KRS calculated precisely, K ′

is the value of KRS calculated using look-up tables and Kmax is the maximum of KRS in the
whole calculated area; the error was evaluated for both real and imaginary parts and the higher
(worse) value is presented here.

Choosing 8 samples per fringe in selection of ∆w according to Eq. (9) and linear interpolation
in the waveLUT leads to maximum error 7.0% (1.1% on average) in the final propagation kernel;
16 samples per fringe to 1.9% (0.3% on average); 32 samples per fringe to ≈ 0.46% (0.07% on
average). While these numbers may seem high, it should be noted that the maximum error
appears in the finest fringes and does not affect their frequency; thus, this error has a negligible
impact on the optical field properties. Combination of the rhoLUT and the waveLUT naturally
further increases the error; typical values of maxRhoErr = λ/100 and 8 samples per fringe lead
to the maximum error 8.8% (2.8% on average), which is perfectly acceptable for our purposes.

Calculation time was tested in realistic geometric scenarios for propagated areas sampled
by 64 × 64 samples to 2048 × 2048 samples. We have prepared two test cases – one for
complicated filtered propagation kernels (see [16]) where look-up tables should clearly win over
direct calculation, and one for simplified Rayleigh-Sommerfeld kernel (without −1/r term) where
even direct calculation is quite fast. Naturally, larger kernels benefit from look-up tables as their
preparation takes comparatively smaller part of calculation time.

Complicated filtered propagation kernel calculation is accelerated mainly by utilizing
waveLUT; 10× or 100× faster calculation is easily achieved, depending on the complexity of
the kernel. Using waveLUT in simple kernel calculation leads to about 1.7× faster calculation.
These numbers include the waveLUT calculation, which takes about 1% of the overall time.

Introducing rhoLUT enhances numerical behaviour in single precision environment; in double
precision environment (CPU), this advantage is not important, as ρ can be easily evaluated
directly. Unoptimized implementation of the rhoLUT can actually double calculation time
compared to direct ρ calculation and the waveLUT. A slightly optimized rhoLUT implementation
is approximately as fast as direct ρ calculation – this optimization exploits the fact that some
values used in the rhoLUT interpolation are constant within a single row (or column) of the
rhoLUT. On the other hand, careful rhoLUT implementation leads to further 20% to 40% speed-
up compared to to direct ρ calculation and the waveLUT. This optimization sets ∆ρ to an integer
multiple of ∆xy and uses integer arithmetic whenever possible.

7. Conclusion
We have introduced a method of calculation of arbitrary radially symmetric functions using a pair
of look-up tables, a rhoLUT and a waveLUT. While using a waveLUT is always advantageous,
using a rhoLUT has its pros and cons. The rhoLUT enhances numerical behaviour in a limited
precision environment (such as GPU); in a high precision environment, it must be carefully
implemented to improve the speed of calculation. We have also analyzed selection of look-up
tables parameters and their influence on the calculation precision.
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