

"Building Bridges with Light" In memoriam of Yu. N. Denisyuk

10th International Symposium on Display Holography

Holographic Floating Imaging System with LCoS SLM and LED Reconstruction Light Source

Po-Sheng Chiu

Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan

Cheng-Huan Chen

Department of Photonics, National Chiao Tung University, Taiwan

David Wang and Sharon Lee

Jasper Display Corp., Taiwan

- Introduction
- Architecture of Floating Imaging System
- LED Reconstruction Light and Pinhole Size
- Image Demonstration
- Conclusions

Floating Image Technology

Floating Image

Autostereoscopic (Without glasses)

Non- Volumetric (See- Through)

	Concave Mirror	Micro-Structure	Integral Imaging	Wedge Prisms	Dihedral Corner Reflector Array
Geometrical Imaging		Diffusion light	Dougles Construction of the Construction of th	Optic axis	Point Light Source

Non- Volumetric (See-Through)

Integral Imaging Micro-Structure Concave Mirror

Wedge Prisms

Dihedral Corner

Reflector Array

Architecture of Floating Imaging System

Rotational/ Concave mirror

D. Miyazaki, Proc. SPIE 9272, 927208-1 (2014).

2015/7/2

C. Rotschid et al., US8500284B2 (8/2013).

Holography reconstruction Light Source

Laser

Advantages

- 1. High spatial coherence
- 2. High temporal coherence
- 3. Highly collimated
- 4. High power

2015/7/2

Holography reconstruction Light Source

Laser

Advantages

- 1. High spatial coherence
- 2. High temporal coherence
- 3. Highly collimated
- 4. High power

Disadvantages

- 1. Safety issue in direct viewing condition
- 2. Speckle problem

015/7/2

Holography reconstruction Light Source

Laser

Disadvantages

- 1. Safety issue in direct viewing condition
- 2. Speckle problem

LED

Advantages

- 1. No Safety issue
- 2. No speckle
- 3. Easy to operate
- 4. Low cost

2015/7/2

Phase Type LCoS SLM

Phase modulation vs. Amplitude modulation

Items for comparison		
Optical efficiency	High	Low
Pixel-pattern relation	One-to-all	One-to-One
Display pattern	Multi-phase picture/pattern	One picture/pattern
Position of image plane	Under software control	Fix by system mechanism

2015/7/2

	-	
Modulation type	Reflective Phase LCoS	
Resolution	1920 x 1080	
LC type	VAN	
Array dimensions	12.5mm x 7.1mm	
Pixel pitch	6.4um	
Pixel gap	0.2um	
Aperture ratio	≥ 93%	
Color field sequential rate	480 Hz	

Holographic Display with LED Reconstruction Light Source

On-axis LED reconstruction

Reflective Pinhole filter **6**0.5mm

Off-axis LED reconstruction

LED pinhole size=0.5 mm T. Ito et al., Opt. Letters 27(16), 1406-1408 (2002). LED pinhole size=0.3 mm

L-Y Liao et al., SID Int. Symp. Dig. Tec. 44(1), 905-908

Determine of Pinhole Size for LED

 $Visibility = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

2015/7/2

Determine of Pinhole Size for LED

Visibility
$$\equiv \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

2015/7/2

Concept of CGHs Pattern Generation

- The layer-based method to create 3D image
- Two picture with different depths in one CGH pattern

2015/7/2

Layer-Based Method to Generate 3D Object

- 2D image with different depths can compose of a 3D image
- By using rotation matrix, we get a rotation 3D image with different coordinates in each point

2015/7/2

.

Micro Optics and Display System Lab.

13

Layer-Based Method to Generate 3D Object

- 2D image with different depths can compose of a 3D image
- By using rotation matrix, we get a rotation 3D image with different coordinates in each point

Layer-Based Method to Generate 3D Object

- 2D image with different depths can compose of a 3D image
- By using rotation matrix, we get a rotation 3D image with different coordinates in each point

44 points with different propagating distance(depth: z) and layer(2D: xy) information

2015/7/2

Micro Optics and Display System Lab.

13

Conclusions

- We propose a holographic display architecture by using extra imaging optics associated with phase LCoS SLM, and uses green LED source for reconstruction.
- Under certain condition, the size of pinhole for a satisfactory image quality can be determined by reconstructed gratings visibility.
- This prototype shows a promising result to display a floating 3D image with the floating distance up to 70 cm.

10th International Symposium on Display Holography

Thank You For Your Kind Attention!

Po-Sheng Chiu (邱博聖)

E-mail: s9830171@m98.nthu.edu.tw Micro Optics and Display System Lab. Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan

國立情華大學 國立立通大學

National Chiao Tung University

