

NATIONAL RESEARCH
TOMSK STATE UNIVERSITY

AUTOMATION THE PROCESS OF CREATION A VIDEO FROM A TIME SEQUENCE OF DIGITAL HOLOGRAMS OF PARTICLES

Victor V. Dyomin, Denis V. Kamenev

10th International Symposium of DISPLAY HOLOGRAPHY, 2015

- Information about shape, size, location of each particle of the volume
- Information about particles ensemble:
- a. Particles concentration in volume/layer
- b. Particles size distribution
- c. Distribution of the particles in volume

The choice of calculating parameters depends on the scientific problem and the object of investigation

The aim of this work is automation the process of creation a video from a time sequence of digital holograms of particles

z=70мм z=76мм z=81мм

Method of the best focusing plane determination

Nº	Method	short description	requirement of ROI detection / preprocessing	speed	error, mm
1	Boundary contrast	Boundary contrast calculation for a number of reconstructed planes	+/+	3/5 (not more then 10 sec.)	0,2
2	Tenengrad	Based on calculation of intensity gradient for a number of reconstructed images using Sobel filter	+/-	4/5	1
3	Longitudinal intensity	Determination the minimal intensity for every transverse coordinate of reconstructed images	-/-	5/5	2
4	Entropy	Calculation the entropy for a number of reconstructed planes	+/-	4/5	3
5	Variance	Calculation the variance for a number of reconstructed planes	+/-	4/5	3
6	Brenner	Calculation the average values of intensity gradient (through one pixel) for a number of reconstructed planes	+/-	4/5	2
7	Correlation	Calculation the correlation coefficients between two specially selected reconstructed images	+/-	3/5 (depend on the number of rec. planes)	3

- 1. Recording a time sequence of digital holograms
- Reconstruction particles images from the hologram at various distances with adjusted step
- 3. Region of interest (RoI) determination
- Determination the position of best focusing plane for every hologram of video sequence
- 5. Combining the reconstructed images in video
- 6. The analysis of the video (particles shape, size, concentration and so on)
- Such way is not useful for ensemble of small particles

To automate the process of holographic video creation we suggest to exclude the Rol determination

VIDEO BASED ON HOLOGRAPHIC DATA OF PLANKTON PARTICLE Epishura Baicalensis USING TRADITIONAL METHOD

Position of the best focusing plane attached to the marked particle

THE ALGORITHM OF 2D MAPPING OF HOLOGRAPHIC IMAGE OF THE VOLUME

Plankton digital hologram

Sections of the volume

$$T = \frac{1}{N_x \cdot N_y} \sum_{i=0}^{N_x - 1} \sum_{j=0}^{N_y - 1} G_{i,j}$$

$$G_{i,j} = \sqrt{S_x^2(i,j) + S_y^2(i,j)}$$

$$S_{X\!M} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad S_{Y\!M} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

VIDEO BASED ON HOLOGRAPHIC DATA OF PLANKTON USING SUGGESTED METHOD

All images of particles of the registered volume are focused!

For fixed single reconstructing distance (150 mm)

For all particles in registered volume (depth 110-200 mm)

RESULTS OF AUTOMATIC PLANKTON PARTICLES HOLOGRAMS PROCESSING

Reconstructed image of sand particles monolayer

Particles size distribution

THANKS FOR YOUR ATTENTION WELCOME TO OUR WORKSHOPS ON FRIDAY

Victor Valentinovich
Dyomin,
PhD, vice-rector
Tel. 8-(903)-914-39-75
e-mail: dyomin@mail.tsu.ru

Denis Vadimovich Kamenev, PhD, researcher Tel. 8-(961)-888-91-91 e-mail: kamenev87@mail.ru