

Image Projection Systems

- · Lots of applications
 - · Theatre projection system
 - Using DLP/DMD based projectors

Image Projection Systems

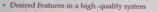
- · Lots of applications
 - Theatre projection system
 Using DLP/DMD based projectors
 - · Projection onto the car wind-shield
 - Using scanning laser projectors

Image Projection Systems

- · Lots of applications
 - · Theatre projection system
 - Using DLP/DMD based projectors
 - · Projection onto the car wind-shield
 - Using scanning laser projectors
 - · Large screen projection Using GLV laser projector

Holographic Image Projection

- · No aberration · ability to correct aberrations
- · Lensless Imaging
 - Reduced cost
 - · Low weight
- · Light efficiency · Large field of view



Holographic Image Projection

· ability to correct aberrations

- · Lensless Imaging · Reduced cost
 - · Low weight

· No aberration

- · Light efficiency
- · Large field of view

Solution Holographic Image Projection System

Utilizes Spatial Light Modulator (SLM)

pixelated structure and its pixel size

Holographic Image Projection

- · Desired Features in a high-quality system Solution
 - · No aberration
 - · ability to correct aberrations
 - · Lensless Imaging · Reduced cost
 - · Low weight
 - · Light efficiency · Large field of view

Holographic Image

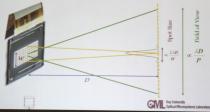
Projection System

X Limits the effective field of view

pixelated structure and its pixel size

Limits of Spatial Light Modulator

- · Quantization error
- · Presence of zero order
- · Pixelated nature and its pixel size
 - · limits the effective field of view


Limits of Spatial Light Modulator

- · Quantization error
- · Presence of zero order
- · Pixelated nature and its pixel size
 - · limits the effective field of view



Limits of Spatial Light Modulator

- · Quantization error
- · Presence of zero order
- · Pixelated nature and its pixel size
 - · limits the effective field of view

Methods to Increase Field of View

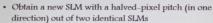
- · Using SLMs with smaller pixel pitches
 - · Not always possible to manufacture SLMs with very small pixel pitch sizes.
 - . Due to some fabrication limits

Methods to Increase Field of View

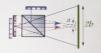
- · Using SLMs with smaller pixel pitches
 - · Not always possible to manufacture SLMs with very small pixel pitch sizes.
 - . Due to some fabrication limits
- · Using magnification optics
 - · Enlarges FOV in the cost of image resolution loss
 - · Introduces additional aberrations
 - · Increases system complexity and negatively affects compactness

Methods to Increase Field of View

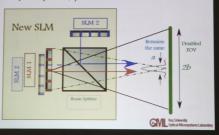
- · Using SLMs with smaller pixel pitches
 - Not always possible to manufacture SLMs with very small pixel pitch sizes.
 Due to some fabrication limits
- · Using magnification optics
 - · Enlarges FOV in the cost of image resolution loss
 - · Introduces additional aberrations
 - Increases system complexity and negatively affects compactness
- · Increasing the distance
 - · Enlarges spot size
 - · May not be possible in HUDs
 - Due to space limitations



Our Proposed Method



- · What do we achieve?
 - · Same pixel size (spot size) on the image plane
 - · Doubled field of view
 - · This sounds as if we use only one SLM.


Setup Details

. The two SLMs (with M×Npixels of pitch P×P) are aligned except for a shift in horizontal direction by a half pixel to obtain a new SLM (with Mx 2N pixels of pitch Px H2).

Hologram Computation

- * An $M \times 2N$ phase-only hologram is computed according to the new SLM.
- The even and odd columns of the hologram are fed in a de interlaced manner into the SLM 1 and 2, respectively.

Hologram Computation

- An Mx 2N phase-only hologram is computed according to the new SLM.
- The even and odd columns of the hologram are fed in a de interlaced manner into the SLM 1 and 2, respectively.

Hologram Computation

- · An Mx 2N phase-only hologram is computed according to the new SLM.
- The even and odd columns of the hologram are fed in a de interlaced manner into the SLM 1 and 2, respectively.

Simulation Results

Before Proper Alignment

After Proper Alignment

"The results are obtained using MATLAB simulations.

Optical Microsystems Laborate

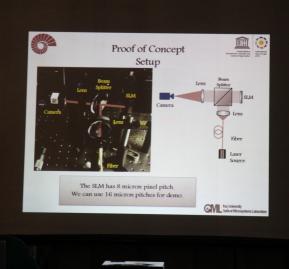
Experimental Setup & Alignment

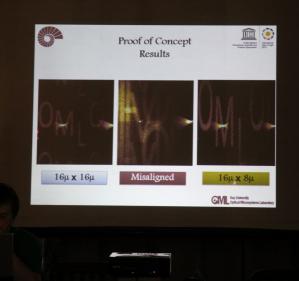
· Some efforts have been done in the lab.

- · However the alignment is not easy to achieve!
- · There exist only one proper location.
 - · We need computer controlled nano-precision stages.
 - · Experiment are ongoing.

Alignment Procedure

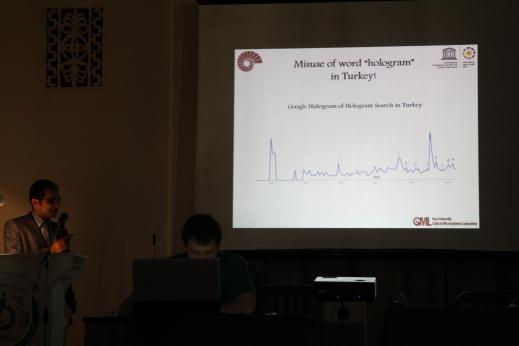
- Converging Beam
 - · Match zero order
 - With out-of-plane rotation adjustment
 Match other orders
 - With in-plane rotation adjustment
- Collimated Beam
 - · Eliminate circular fringing patterns
 - Play with z axis
- Final Step
 - · Try to match pixel-by-pixel
 - · Use checker boards
 - · Play only with x and y axis

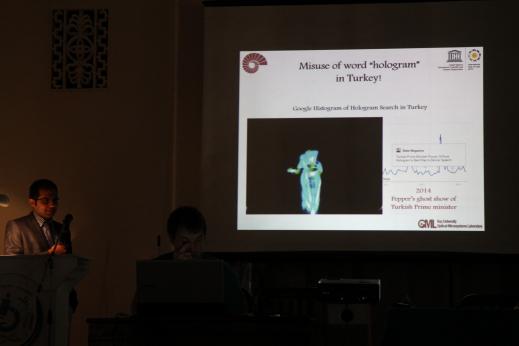




screen

Koç University Optical Microsystems Laborate


Conclusion



- The individual images of two SLMs coherently interfere and merge into a single image with doubled area.
- · A new SLM with a halved pixel pitch in one direction can be created out of two identical SLMs.
- · The proposed method is especially useful when it is not possible to manufacture SLMs with small pixel pitches.

Koç University
Optical Microsystems Laboratory

Thanks for your attention...

Q & A ?

.....ku.edu.tr