

Introduction (1) :Rutherford-Sommerfeld equation

 The observed wave field can be calculated in terms of the incident wave field through aperture.

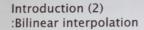
$$U = \frac{-1}{4\pi} \int ds_1 U \frac{\partial}{\partial n} \left[\frac{e^{jkr_{01}}}{r_{01}} - \frac{e^{jkr_{21}}}{r_{21}} \right] = \int ds_1 U(P_1) \frac{e^{jkr_{01}}}{r_{01}} \left(\frac{1}{j\lambda} + \frac{1}{2\pi r_{01}} \right) \cos(n, r_{01})$$

Numerical calculation

	Propagation distance	Computing time		
RS equation	Every distance	~ N ²		
ASM	Short distance	~ N logN		
FDM	Large distance	~ N logN		

*ASM: angular spectrum method *FDM: Fresnel diffraction method

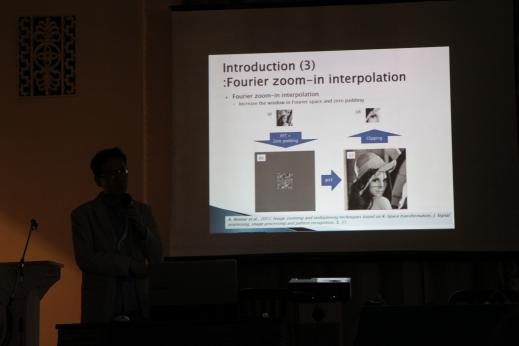
Goodman J W, 2005, Introduction to Fourier Optics 2nd edn (New York: McGraw-Hill).

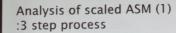


- Bilear Interpolation
 - Interpolate the discrete source image
 - Artifacts (aliasing, blurring, edge halo) are removed with the extra aid of some filters.

				7	8	5		7	7.5	8	6.5	5	5
7	8	5	1				1	6.5	7.5	9	8.5	7	7
6	10	9	7	6	10	9	7	6	8	10	9.5	9	9
			,				1	6	8	10	9.5	9	9

A. Ammar et al., 2012, Image zooming and multiplexing techniques based on K-Space transformation, J. Signal processing, image processing and pattern recognition, 5, 31.





- Scaled angular spectrum method: 3 step

 1. Wave field of a source plane, g(x,y,0) is fast Fourier transformed to G(u,v,0).
 G(m∆_u, n∆_v; 0) = FFT[g(k∆_{1x}, l∆_{1y}; 0)]
 - 2. Spatial frequency spectrum, G(x,y,0) propagates with a transfer function. $G(m\Delta_w, n\Delta_\psi; z) = G(m\Delta_w, n\Delta_\psi; 0) e^{j2\pi x} \sqrt{\lambda^{-2} (m\Delta_w)^2 (n\Delta_\psi)^2}$
- 3. Spatial frequency spectrum, G(x,y,z) is inverse Fourier transformed to g(x,y,z). $g(k\Delta_{2x},l\Delta_{2y};z) = \frac{1}{M_xM_y} \sum_{w} G(m\Delta_u,n\Delta_v;z) \exp[j2\pi k\Delta_{2x}m\Delta_u + j2\pi l\Delta_{2y}n\Delta_v]$
- If sampling intervals at a destination plane are different from that of a source plane, Inverse Fourier transform have to be calculated by non-uniform fast Fourier transform (NUFFT) or by Chirp-Z transform.

Shimobaba et al., 2012, Scaled angular spectrum method, Opt. Lett. 37, 4128.

Analysis of scaled ASM (2): 5 step process

- Scaled angular spectrum method: 5 step
 - 1. Wave field of a source plane, g(x,y,0) is fast Fourier transformed to G(u,y,0).
 G(mΔ_u, nΔ_y; 0) = FFT[g(kΔ_{1x}, lΔ_{1y}; 0)]
- * 2. Spatial frequency spectrum, $G(\mathbf{x},\mathbf{y},0)$ propagate with a transfer function. $G(\mathbf{m}\Delta_{\mathbf{u}},\mathbf{n}\Delta_{\mathbf{y}},z)\\ = G(\mathbf{m}\Delta_{\mathbf{u}},\mathbf{n}\Delta_{\mathbf{y}},z)\\ = G(\mathbf{m}\Delta_{\mathbf{u}},\mathbf{n}\Delta_{\mathbf{y}};0)e^{J2\pi z\sqrt{\lambda^{-1}-(\mathbf{m}\Delta_{\mathbf{y}})^2-(\mathbf{n}\Delta_{\mathbf{y}})^2}}$
 - 3. Wave field of a destination plane, g(x,y,z) with the same sampling interval. $g(k\Delta_{1x},l\Delta_{1y};z)=\text{IFFT}[G(m\Delta_{u},n\Delta_{y};z)]$
- 4. Fourier transform of wave field at a destination plane.
 G(mΔ_w, nΔ_y; z) = FFT{g(kΔ_{1x}, lΔ_{1y}; z)}
- 5. Spatial frequency spectrum, G(x,y,z) is inverse Fourier transformed to g(x,y,z).
 g(kΔ_{2x}, lΔ_{2y}, z) = 1/4. (m_{Ax} Σ_{mx} G(mΔ_u, nΔ_v; z) exp[/2πkΔ_{2x} mΔ_u + /2πlΔ_{2y} nΔ_v]

$$\frac{1}{M_{X}} \sum_{i} G(m\Delta_{ui}, n\Delta_{v}; x) \exp \left[j2\pi \frac{mkR_{sc}}{M_{X}} + j2\pi \frac{nlR_{sc}}{M_{y}} \right]$$

Analysis of scaled ASM (3) : New interpretation

Scaled angular spectrum method: 5 step

1. Wave field of a source plane, g(x,y:0) is fast Fourier transformed to Circus.

2. Spatial frequency spectrum

Gindan Field propagation

Wave field propagation meth

Wave field propagation

Wave field propagation

Make f

4. Fourier transform of wave field at a destination plane.

g(ka_{2x}, la_{2y}, z) = y Fourier zoom—in interpolation? mean g(x,y,z) = y results | zerola + /2rla_{2x} nd. |

Fourier zoom-in interpolation (1) : Equivalence proof to last page

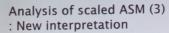
- Fourier zoom-in interpolation
 - 1. Zero-padded spatial frequency spectrum, G_{zp} (u,v z), is inverse Fourier transformed to Fourier zoom-in image, g_{tz}(x,y.z).

$$g_{fxi}(\mathbf{k}'\Delta'_{1x},\mathbf{l}'\Delta'_{1y};z) = \frac{1}{M_x M_y} \frac{M_x - \frac{M_y}{2M_{xx}} - 1}{M_x M_y} G_{xp}(m'\Delta_w, n'\Delta_w;z) \exp\left[j2\pi \frac{m\mathbf{k}'R_{xx}}{M_x} + j2\pi \frac{n\mathbf{l}'R_{xx}}{M_y}\right]$$

 \circ 2. G_{zp} (u,v:z) is not zero when (m, n) are between $(-M_x/2, -M_y/2)$ and $(M_x/2-1, M_y/2-1)$.

$$g_{fit}(\mathbf{k}'\Delta'_{1x},\mathbf{l}'\Delta'_{1y};z) = \frac{1}{M_x} \sum_{m=-\frac{M_x}{2},m=-\frac{M_y}{2}}^{\frac{M_x}{2}-1} G(m\Delta_{u},n\Delta_{v};z) \exp \left[j2\pi \frac{mk'R_{sc}}{M_x} + j2\pi \frac{nl'R_{sc}}{M_y}\right]$$

 $\circ~$ 3. Clip center region of interest : (k', l') are between (-M_x/2, -M_y/2) and (M_x/2-1, M_y/2-1).



Scaled angular spectrum method: 5 step

1. Wave field of a source plane, g(x,y:0) is fast Fourier transformed to Circ y:0).

2. Spatial frequency spectrum

Graduant

Wave field propagation

Wave field propagation

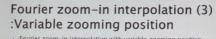
met Wave field propagation.

Maye field propagation.

Angular spectrum method

Fourier zoom-in interpolation

Fourier zoom-in interpolation (2) : Numerical meaning · Complex field interpolation $g_{fx}(k',l';z) = \frac{1}{M_{s}M_{p}} \sum_{\substack{k-l,k'=1\\ k-l'=k'',k''=k''\\ k-l''}}^{M_{p}} g(k,l;z) \exp\left[-j2\pi \binom{k'B_{sr}-k}{2M_{s}} + \frac{l'B_{sr}-l}{2M_{p}}\right] \frac{\sin[2\pi \frac{k'B_{sr}-k}{2}]}{\sin[2\pi \frac{k'B_{sr}-k}{2M_{p}}]} \sin[2\pi \frac{l'B_{sr}-l}{2M_{p}}]$ Rsc=0.3 ■ k'=0 ■ k'=1 ■ k'=2 ■ k'=3



Fourier zoom-in interpolation with variable zooming position
 1. Region of interest around (κ₀, γ₀): we can restrict variables (k, ι) between (- M_c / 2 + x_c / Δ^{*}_{1,0}, - M_c / 2 + γ₀ / Δ^{*}_{1,0}, M_c / 2 - 1 + γ₀ / Δ^{*}_{1,0}).

 $y'_{fzi}(k'\Delta'_{1x}, l'\Delta_{1y}; x_{0,y_{0,z}}) = g_{fzi}(x_{0} + k'\Delta'_{1x}, y_{0} + l'\Delta'_{1y}; z)$

 $=\sum_{m,n}G(m\Delta_u,n\Delta_v;x)\exp[j2\pi(x_0m\Delta_u+y_0n\Delta_v)]\exp\left[j2\pi(\frac{mk'R_{sc}}{M_x}+\frac{nl'R_{sc}}{M_y})\right]$

Wide range ASM (1):Band-limited ASM

 Nyquist theorem: local frequency of a function have to be below a half of a sampling frequency to avoid an aliasing error.

$$\frac{1}{2\pi}\frac{\partial w}{\partial u} < \frac{1}{2\Delta_u}, \frac{1}{2\pi}\frac{\partial w}{\partial v} < \frac{1}{2\Delta_u}$$

→ Angular spectrum method → Band-limited ASM

Matsushima K and Shimobaba T, 2009, Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields, Opt. Express 17 19662

Wide range ASM (2) :Variable sampling interval

> Constant sampling interval in a Fourier space

$$\Delta_u = \frac{1}{2M_x\Delta_{1x}}, \Delta_v = \frac{1}{2M_y\Delta_{1y}}$$

$$\qquad \qquad \mathsf{G(0)} = \mathsf{FFT}\{\mathsf{g(0)}\}$$

Variable sampling interval in a Fourier space

$$\Delta_u = \frac{1}{R_{wr}(z)} \frac{1}{2M_x \Delta_{1x}}, \Delta_v = \frac{1}{R_{wr}(z)} \frac{1}{2M_y \Delta_{1y}} \quad \text{G(0)} = \text{NUFFT}\{g(0)\} \text{ or } G(0) = \text{Chirp Z} \{g(0)\}$$

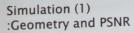
Yong-Hae Kim et al., 2014, Non-uniform sampling and wide range angular spectrum method, J. Opt. 16

Wide range ASM (3) :Accuracy vs. propagation distance

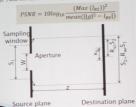
-) The band limited ASM shows a maximum around $z=80\,S_1$ and falls below 10 dB when $z>1000\,S_1$
- However, the wide range ASM keeps the increasing trend of PSNR until z = 1585 S, and remains above 45 dB up to z = 100,000 S₁.

Figure 5. Simulated intensity profile using (a) materied integration of the Rayleigh-Sommerfold solution, (s) the ASM, (s) the band famous with a solution for make a solution of the security at a solution for the wide course ASM at a fortunate a class when the propagation distance in 1985 S. The intensity at a source plane in 1 mes

Yong-Hae Kim et al., 2014, Non-uniform sampling and wide range angular spectrum method, J. Opt. 16

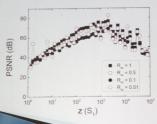


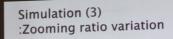
- Peak signal to noise
 - $Max(I_{RS})$ is the maximum intensity obtained by the numerical integration of RS
 - + $mean(||g|^2 I_{RS}|)$ is the average of the absolute intensity difference between the simulation $(|g|^2)$ and the numerical integration of RS equation $(l_{\rm RS})$



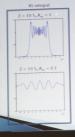
Simulation (2) :Zooming ratio variation

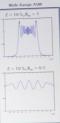
 \rightarrow PSNR is independent on the zooming ratio (R_{sc}).





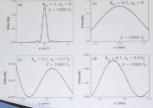
 \rightarrow Maximum intensity is nearly independent to zooming ratio (R $_{\mbox{\tiny SC}}$).

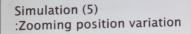




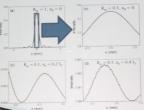
Simulation (4) :Zooming position variation \rightarrow When the zooming position $(\mathbf{x}_{\mathrm{o}})$ is increased, the PSNR is decreased at maximum to -20 dB when propagation distance z is 1000 S₁. $x_0 = 0 S_2$ $x_0 = 0.1 S_2$ PSNR (dB) $0 - x_0 = 0.3 S_2$ 10⁴ 10² 10³ z (S₁)

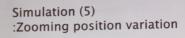
Simulation (5) :Zooming position variation : When the zooming position (x_0) is 0.4 s_2 , the maximum intensity is about by 10^{-2} of the intensity when zooming position (x_0) is 0 s_2 .



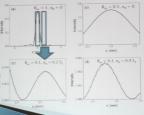


) When the zooming position (x_0) is 0.4 S_2 , the maximum intensity is about by 10^{-2} of the intensity when zooming position (x_0) is 0 S_2 .





. When the zooming position (x_0) is 0.4 S_2 , the maximum intensity is about by 10^{-2} of the intensity when zooming position (x_0) is 0 S_2 .



Simulation (5) :Zooming position variation • When the zooming position (x₀) is 0.4 S₂, the maximum intensity is about by 10⁻² of the intensity when zooming position (x₀) is 0 S₂.

