

Assumptions of the mathematical model description:

elementary phase diffractive gratings are sinusoidal;
 effects caused by secondary re-reflections are negligible;
 the scalar diffraction theory is used.

The equation of the phase grating surface

$$z = A \cdot (1 - \cos \frac{2\pi x}{T}) = 2A \sin^{-2} \frac{\pi x}{T}$$

Wave amplitude distribution

$$U = U_0 \cdot U_1 \cdot U$$

$$U_1 = \int_0^T e^{ikb_{1s}} dx$$

$$U_2 = \sum_{j=0} e^{\beta j \Delta_0}$$

$$\Delta_0 = T(\sin \alpha + \sin \beta)$$

Intensity distribution

$$I = I_{\circ} \cdot I$$

$$I_1 = |U_1|^2$$

$$I_2 = |U_2|^2 = \frac{\sin^{-2}\left(\pi \frac{N\Delta_0}{\lambda}\right)}{\left(\pi \frac{N\Delta_0}{\lambda}\right)}$$

Graphs of the ratio between intensity distribution I in the first order of diffraction and the grating depth d for normal incidence of radiation

$$\alpha$$
=0, $T_x = 1.5 \, \mu m$, $\lambda = 400, 500, 600, 650, 700 \, nm$

Graphs of the ratio between intensity distribution / in the first order of diffraction and the grating depth d $T_x=1~\mu m,~\lambda=400,500,600,650,700~nm$

 $\alpha = 60^{\circ},$ $\lambda = 405 \, nm$

To improve the accuracy of the method, we use the relationship $\it R$ between intensity distributions of the 1st and 2nd diffraction orders

Graph of the ratio between R and the grating depth d

for
$$T_x = 1 \mu m$$
, $\lambda = 405 nm$

Functional scheme showing principal of the method Photodetector Security hologram

Conclusions

- The possibility of security holograms quality inspection based on the proposed method of indirect measurement of grating parameters is confirmed.
- 2) Relations for defining the parameters of the grating are derived.