

Microsystems
Microfluidics/MEMS
Miniaturization
Custom Device+Process

Advanced Optics
Electro-Optics/SLM's
CGH/Gratings/DOE's

Planar optics
Holographic Systems

Applications
3-D micropatterns
2D/3D Displays
Biomedical Devices
High Energy Masks

- Industrial manufacturing processes use lasers effectively and profitably via ablation of thin films and solid materials. +++
- Ablation patterning speed is often limited by mechanical scanning of a single beam (serial processing).

A photomask process can yield higher production rates:

- Laser peak and average power are now very substantial >1000W CW.
- Laser Ablation can produce patterns quickly by directing laser light to more points on the workpiece simultaneously. (parallel processing)

CREATIVE

Lithography Mask + High Power Laser Sources

- Industrial manufacturing processes use lasers effectively and profitably via ablation of thin films and solid materials. ***
- Ablation patterning speed is often limited by mechanical scanning of a single beam (serial processing). ---

A photomask process can yield higher production rates:

- Laser peak and average power are now very substantial >1000W CW.
- Laser Ablation can produce patterns quickly by directing laser light to more points on the workpiece simultaneously. (parallel processing)

Lithography Mask + High Power Laser Sources

- Industrial manufacturing processes use lasers effectively and profitably via ablation of thin films and solid materials. +++
- Ablation patterning speed is often limited by mechanical scanning of a single beam (serial processing). ---

A photomask process can yield higher production rates:

- Laser peak and average power are now very substantial >1000W CW.
- Laser Ablation can produce patterns quickly by directing laser light to more points on the workpiece simultaneously. (parallel processing)
- · Key Questions for Holographic Lithography:
- Can ablation be more efficient?
 Many systems waste >90% of illumination

Lithography Mask + High Power Laser Sources

- Industrial manufacturing processes use lasers effectively and profitably via ablation of thin films and solid materials.
- Ablation patterning speed is often limited by mechanical scanning of a single beam (serial processing). ---

A photomask process can yield higher production rates:

- Laser peak and average power are now very substantial >1000W CW.
- Laser Ablation can produce patterns quickly by directing laser light to more points on the workpiece simultaneously. (parallel processing)
- Key Questions for Holographic Lithography:
- Can ablation be more efficient?
 Many systems waste >90% of illumination
- Can photomasks withstand higher energy and power?

- Microelectronic packaging
- MEMS and 3-D devices
- Displays, ink jet nozzles
- Microfluidic and medical devices
- Sensors and detectors
- Photovoltaic cells

Thin film microfluidic sensors

ISDH 2015 - PARKER

Micro-nozzle array by ablation

Microfluidic reactor in glass

- Critical to microelectronics manufacturing
 - Mask projection is ideal for high throughput requirements
- Only way for "massive" patterns with >109 features
- "Green" manufacturing with laser ablation
 - Lowers energy usage in the tool and support facilities
 - Reduces pollution and water usage, now approx. 40 liters per IC
 - Cuts waste stream from process steps in litho and etch
 - Increase throughput and profits

Microlithography in a Global Context

- · Critical to microelectronics manufacturing
 - Mask projection is ideal for high throughput requirements
 - Only way for "massive" patterns with >10⁹ features
- "Green" manufacturing with laser ablation
 - Lowers energy usage in the tool and support facilities
 - Reduces pollution and water usage, now approx. 40 liters per IC
 - Cuts waste stream from process steps in litho and etch
 - Increase throughput and profits
- · Holo-lithography Complements "mask-less" lithography:
 - · Direct Write Laser (patterning without a mask)
 - · Spatial Light Modulator and DLP pattern generators

Data set for complex pattern in 2-D or 3-D

Amplitude mask in film or metal by electron beam or laser direct write

Convert
Amplitude to
Phase

Transparent Phase mask or SLM

Holographic Mask Fabrication Lasers: 2W UV and 30W tunable Sabres, Coherent FRED's, Lambda Physik 100W 193/248nm excimer, pulse YAG 266/355/532nm Holographic Mask seen in white light W MICROSYSTEMS ISDH 2015 - PARKER

Holographic Projection Mask Compared to a Projection Lens system

Lensless Projection: a holographic mask projects a real image that is focused on the workpiece [Resolution and DOF follow N.A.]

- Less expensive system saves the cost of a projection lens
- Less maintenance no lens to maintain, align or replace
- Not off-axis (i.e. Stetson/Phillips/Holtronics) a true "in-line" system

Redundancy: pattern data is distributed on the holographic mask

- In-line recording of the image
- Hologram masks are highly resistant to damage and debris
- Inherent security can not be modified or copied

3 Dimensional: one hologram can have multiple patterns/foci

- Images recorded on the mask can be addressed with multiple wavelengths simultaneously – one for each material or energy/depth
- Images can be replayed sequentially for different features or simultaneously at several distances

CMC Holographic Lithography Testbed

Lithographic Image with Lensless Projection

Mask's phase modulating surface relief

TCREATIVE

Illumination "Gain": the hologram collects light and focuses it on the substrate

- Illumination is not reflected or absorbed (vs traditional mask)
- More efficient use of expensive laser light: up to 12X better
- Ideal for use with non-linear materials: 15-40X background level

Features on Mask

Mask's phase modulating surface relief

Illumination "Gain": the hologram collects light and focuses it on the substrate

- · Illumination is not reflected or absorbed (vs traditional mask)
- · More efficient use of expensive laser light: up to 12X better
- Ideal for use with non-linear materials: 15-40X background level

Higher power: illumination energy can be 10-20X that used with metal or dielectric ablation masks

- · Higher power means higher throughput from one tool
- Higher gain means more features per pulse less wasted light
- Over a 4 million holes a minute from one laser (2009)

- •Laser lithography using holographic projection masks is a low cost "Green" alternative to lens-based lithographic systems.
- •Parallel process yields high production rates using short pulse high power lasers to pattern large areas with many features
- •"Green" micro/nano manufacturing for microelectronic and MEMS devices or any precise microsystem component. No water or chemicals involved.
- •Redundancy of pattern information on the mask increases yield and 3-D structures enabled with one mask

Holographic Mask in white light

Projected images with 0.5um resolution

ISDH 2015 - PARKER

CREATIVE MICROSYSTEMS

Thank You for your attention!

Contact: Bill Parker - CEO

Bill Parker - CEO

Creative MicroSystems Corporation
49 Fiddler's Green

Waitsfield, Vermont, 05673 USA

Tel: 802-496-6620

Email: bparker@CreativeMicro.com