

Fully computed holographic stereogram

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Department of Precision Instrument
Tsinghua University
Beijing, China
zhanghaocgh@Hotmail.com

Saint Petersburg, Russia July 1st, 2015

☐ Reconstruction of whole optical wavefront

Can provide all the depth cues

binocular cues

motion parallax & occlusion

accommodation

☐ Without using interference of coherent light

Algorithm

Can display both real and virtual scenes

Mathematical representation

Hologram

Can CGHs be more photorealistic?

Motion parallax and occlusion effect blocked area contributed area point source

Fully-computed holographic stereogram

generated holograms with accurate depth cues," Opt. Express 23, 3901-3913 (2015)

Geometrical transmission

A amplitude

$$\sin \theta_{\max} = f_{\max} \lambda = \frac{1}{2d} \lambda$$

$$h_{hogel}\left(x,y\right) = \sum_{j=1}^{N} \frac{A_{j}}{r_{j}} \exp\left[i\left(kr_{j} + \phi_{j}\right)\right]$$

$$r_{j} = \sqrt{(x-x_{j})^{2} + (y-y_{j})^{2} + z_{j}^{2}}$$

$$(\theta_x, \theta_y, z_p)$$

$$z_o = z_p$$

$$x_o = z_o \tan \theta_x$$

$$y_o = z_o \tan \theta_y$$

 (x_o, y_o, z_o) coordinates

High-resolution CGH

Parameter	Value	
Number of pixels	$4 \times 10^8 (20,000 \times 20,000)$	
Pixel pitch	1 micron	
Hologram size	20mm×20mm	
Modulation type	Binary amplitude	
Wavelength	532nm	
Viewing angle	30.9°	

Optical reconstructions

Focusing on the bunny

Focusing on the wall

Center

Right

Left

Center

Right

Acceleration

2688 CUDA Cores

CGH(1024x1024)	CPU	GPU	5GPU
1000 points	83.9s	60ms	13ms
5000 points	427.9s	298ms	65ms
10000 points	847.4s	605ms	129ms
50000 points	4203.4s	3002ms	664ms

Layered holographic stereogram

$$H = \sum_{i=1}^{n} Fresnel^{-1} \left(L_{i} \right)$$

Sampling in Fresnel propagation

$$\Delta x = \frac{\lambda d}{N \Delta \xi}$$

$$x \in \left[-\frac{\lambda d}{2\Delta \xi}, \frac{\lambda d}{2\Delta \xi} \right]$$

$$\tan\frac{\theta}{2} = \frac{\lambda}{2\Delta\xi}$$

Reconstructions

Point based

N

Layer based

Calculation time: 3390s VS 21s (CPU) 2.42s VS ? (GPU)

Conclusion

- ☐ Computer graphics rendering can be used in CGH calculation to improve the image fidelity
- ☐ More depth information can be reconstructed by integrating physically based algorithm and holographic stereogram
- ☐ Use GPU for acceleration

