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Original points reconstruction

o perfect for points in focus only
e |oss of information
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Light diffraction
e depends mainly on frequency f of the pattern

output angle of the rays: sinf,,, = mAf + sing,,

diffracted rays

low frequency pattern

undiffracted ray —

‘_eﬂ\

\

high frequency pattern




Hologram watching

e illuminate hologram with a light source
e light beams start to diffract on the pattern
as if the original object was still present

diffracted
rays

reconstruction
light hologram




o Nature of the light

force interaction between

(oscillating) point charges

point source of a light:

movement up and down ~ A cos(wt - @)

force (field) in a distance r:

u(t, r) = é cos(wlt - g] - @) = A' cos(wt - @'(r))

photographic emulsion reacts on intensity: (A')?

cannot tell close “darker light”
from distant “brighter light”

Computer generated holography: 3D vision and beyond 10/ 120
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21t/ T angular frequency
1/T frequency
speed of the light
cT wavelength
211/N  wavenumber
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Interference

constructive
X

destructive
interference

Computer generated holography: 3D vision and beyond 13 /120



e image of X in p: amplitude 0 except of X' (—0)
e image of Y in p': amplitude 0 except of Y*' (—oc0)
e image of Y in p: amplitude and phase from Y’




reconstruction of X': point X
reconstruction of “blurry” Y':
constructive interference in Y’
= reconstruction of Y




phase is critical for 3D image — how to capture it?
no need for a lens anymore

observation from A: pseudoscopic image
observation from B: orthoscopic image

®)




j = -1
e =cos x + jsin x
A COS(COt — QD) = Re{A ej(a)t—qo)}

e¥ + eV = 2cos (2 ; Yy exp (]

x+y)
2
ex + e =2cos x

intensity of U = A eiwt-o)
U|2 = UU* = A eilwt-9) A g-ilwt-0) = A2




Complex notation

Advantage of phasor arithmetic

optical fied — time dependent function:

u(t, r) = A cos(wt - ¢@(r))

its phasor (complex amplitude):

U(r) = A exp(-j@(r))

sum of optical fields:

A, cos(wt - @, (r)) + A, cos(wt - ¢, (r)) + - =7
in phasor arithmetic:

A, exp(=i@.(r)) + A, exp(=j@, (r)) + - = Usum(r)
optical field (if needed):

U.,m(t, r) = Re{U,,.(r) et}

Computer generated holography: 3D vision and beyond 18 /120



Spherical wavefront

e u(t, 1) = 2 exp(jlot - kr - @)

= é exp(jwt)exp(-jlkr + @])

amplitude

complex amplitude:

U(r) = 2 exp(=jlkr + 1)

resembles a plane
in @ big distance




Plane wavefront

e wavefront normaln, |[n| =1
e wavefronts period A
e wave vector k = kn = 21/An
e pointin space x = (X, y, Z)
e wavefront plane equation

K - X = const.

e U(x) = Aexp(-jlk - x + @])

e rays: “directions perpendicular
to wavefronts”




e complex amplitude at the

slit of almost zero width

Ur,) = 2~ exp(-ilkr, + @)

In

e after “normalization” | screen

Uuo) = A’
e complex amplitude behind the opaque screen
A _
U(rout) = r eXp(—J [krout])

out




o Multiple slit diffraction

e m-th diffraction maximum:
sin@,,=m - A/d

diffraction pattern for d = 3 A

1st diffraction
maximum

Oth diffraction
maximum

Computer generated holography: 3D vision and beyond
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Multiple slit diffraction

e change of period = change of diffraction angles
e change of illumination angle (not shown)
= sinB@,, = m - AN/d + sin@,, (grating equation)

diffraction pattern for d = 2.5\

1st diffraction
maximum (d = 2.5\

1st diffraction
maximum (d = 3\)

maximum
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screen in a planez =10
two slits in a distance d
angle of observation 6,
in a distance r,,, > d
change in 6,

= change in mutual “shift”
of rays
= change of interference




e in fact:
two point sources
common amplitude A/,
phases @,, @,: +—Po
A/ €XD(=3 [KF ot + ®1]1) 4

d sin@,,

A’/ €XP(=] [k + @ + kdsinB,,])

e their sum: Kdsing
— +
2A’/rout COS (PO QDI 2 SIn out X

+ @, + kdsi
 exp(-j[kry, + Lot L1t KOS P




e +1st diffraction maximum:
P, — ¢, + kdsin@,,,
2

e m-th diffraction maximum:
Qo — @, + kdsinB,,, = m - 2

= X717

amplitude

A

double slit diffraction
¢Q, =@, =0, d=3A=1500nm




screen lighting by
a plane wave at an angle 6,
QDl —_ QDO + deln ein

m-th diffraction maximum:

P, — ¢, + kdsinB,,, = m - 211

after substitution:
-kdsinB,, + kdsin@,,, = m - 21
sinB,,, = mA/d + sin@,, (grating equation)




e Opaque screen
with thin N slits, di "N 28 um
period d

real grating

amplitude N-thin-slit diffraction, d = 3\ = 1.5 pm

- | -
2 4

6
_ %ﬁ |




Amplitude diffraction grating

e other transmittance profiles:
— different slit width
— different transmittance shape
= different brightness of maxima

transmittance profile

T(x) = (1 + cos(21rx/d))/2

— the only important maxima:
m e {0, +1, -1}

Computer generated holography: 3D vision and beyond
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Cosine pattern diffraction

e plane wave U(x) = exp(-j[k-Xx]) passing through
a pattern with cosine transmittance profile:
U(X)|;-0 = [1 + cos(21rx/d)]/2 exp(-j[k-x])

= = exp(-jlk-x]) + = cos(2mx/d) exp(-j[k-x])

= = exp(-j[k-x])

+ =+ [exp(-j2mx/d) + exp(j2mx/d)] exp(-j[k-x])
= - exp(-j[k-x])

+ 5 exp(-j[k.;-x]) + 5 exp(-i[k_;-x])

Computer generated holography: 3D vision and beyond 30/ 120



f=1/d
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Cosine profile recording

e plane wave complex amplitude: A exp(-j[k - x])
inclination 6,: k = k(sin8,, 0, cosé@,)
in the planez=0: x = (x, y, 0)

= k - X = kxsin@,

e intensity of sum of plane waves from angles 6,, 6;:
|Aexp(-jkax) + Aexp(-jkgXx)|* =
= (Aexp(-jky'x) + Aexp(-jkg X)) X

(Aexp(jk,-x) + Aexp(jkg'x)) =

= 2A + 2Acos(k, x — kg'x) =
= 2A {1 + cos(k[sinB, — sinB;]x) }

e frequency of the pattern f = (sin8, — sin6;)/A

Computer generated holography: 3D vision and beyond 32 /120



grating equation:

sinB,,, = mMA/d + sinB,, = mAf + sin@,,
after manipulation:

sin@,,, = m(sinf, — sinBg) + sinB,,
example: m = +1, sinB; = sin@,,

sin@,,, = sin@,
X1

Bout

recording reconstruction




object wave: B, (= 6,), A = At

reference wave: O (= 6g), A = A
illumination wave: 6, (= 6,,), A = A,
Aiy
)\ref
example: Ay = A, 6,y =0.=0

sinf,,, = m

(SinB,,; — SinB,) + sin G,

recording - . reconstruction
virtual m = +1

image
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Light diffraction
e depends mainly on frequency f of the pattern

output angle of the rays: sinf,,, = mAf + sing,,

diffracted rays

low frequency pattern

undiffracted ray —

‘_eﬂ\

\

high frequency pattern




Virtual image creation

e illuminate hologram with a light source
e light beams start to diffract on the interference
pattern as if the original object was still present

diffracted
rays

reconstruction
light hologram




Real image creation

e output angle of the rays: sin@,,, = mAf + sing,,
e for m = -1, rays create real image of the scene
e both rays for m = +1 and -1 appear at once

= no need to distinguish between them

S —— —

diffracted
rays

virtual
image

hologram

\

N
o~

image




Hologram recording

Basic setups

e in-line (Gabor) hologram
— for transparent objects
- image damaged by Oth order
- low spatial frequencies

o off-axis (Leith-Upatnieks) hologram
— for opaque objects spiitter
— clear image X
- high spatial frequencies ref. w.

(over 1000 lines/mm) 7/

mirror

— aberrations hologram

v
hologram

Computer generated holography: 3D vision and beyond 39/ 120



Hologram principle proof

e hologram: recording of the interference of the
object wave O and the reference wave R:
I =(0+R) (0O + R)* =00* + RR* + OR* + O*R
e after illumination by the copy of the reference wave:
U=1R
= (OO0*)R diffracted illumination wave
+ (RR*)R attenuated illumination wave
+ O(RR*) copy of the object wave
+ O*(RR) conjugate image

Computer generated holography: 3D vision and beyond 40 / 120



3D display holography

e reconstruction wave (hologram illumination) the
same as reference wave (in recording process)
= observation of the original object

Hologram created by Sdrka Némcovd, CVUT Praha

Computer generated holography: 3D vision and beyond 41 / 120




3D display holography

e reconstruction wave changes the angle
= observation of the (deformed) original object
from a varying viewpoint
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Holography applications

e microscopy, optical metrology
— perfect light recording (biological sample,
bubble chamber, ...)
- hologram examination (unlimited time of
observation, safe environment, ...)
e enhancing electron microscopy
— original Gabor idea behind holography
- hologram recording with electron beam
(A is 100000x smaller than for visible light)
— hologram enlargement, visible light illumination
= image 100000x bigger

Computer generated holography: 3D vision and beyond 43 / 120



o diffractive (holographic) optical elements
- mimicking any optical element
— cheaper, easier abberation correction,

light

reference

hologram hologram
N : ;

optical
setup

"object” reconstructlon \ diffracted
light light light

diffractive optical element recording diffractive optical element usage




o Holography applications

e non-destructive testing
— double object recording on one hologram
— microshifts cause interference strips
— vibration causes loss of interference strips

Molin and Stetson,
Institute of Optical
Research, Stockholm
(1971)

Computer generated holography: 3D vision and beyond 45 /120



Digital holography

Hologram creation mathematically

for every point (x, y) of the hologram:
get the amplitude A,,; and the phase @,
of the object wave in (X, y)
get the amplitude A, and the phase @,
of the reference wave in (X, y)
calculate captured intensity in (x, y)

I(XI y) = |Aobj eXp(—j gDobj) + Aref eXp(—j q)ref)l2

Computer generated holography: 3D vision and beyond 46 / 120



Object wave

Complex amplitude of a point source

e point source P Xy *
at (X, Yo 2p), 2o < 0
light amplitude A;, phase @y,
wavelength A = 630 nm
(== k=21 /A =107
hologram planez =0

A .
Us(X, vy, 0) = r_P exp(-jLkr + @p])
P

e =[(X=Xp)2+ (y — yp)* + Zp°]Y2

Computer generated holography: 3D vision and beyond

47 / 120



Really unoptimized Matlab code

lambda = 630e-9;

K = 2*pi/lambda;

res x = 200;

res y = 200;

hologram z = 0;

sampling = 20e-6;

corner X = -(res x-1) * sampling / 2;

corner y = -(res y-1) * sampling / 2;

sources [0, 0, -0.5; 20*sampling, O, -0.5;
-40*sampling, 20*sampling, -0.5];




objectwave = zeros(res y, res X);
for source = l:rows(sources)
for column = l:res x
for row = 1l:res vy
X = (column-1) * sampling + corner X;
y = (row-1) * sampling + corner y;

objectwave(row,column) +=
exp(i*k*sqrt((x-sources(source, 1))**2
+ (y-sources(source, 2))**2
+ (hologram z - sources(source, 3))**2));
endfor
endfor
endfor




Real part of the object wave
(Just for information;
it has no physical meaning!)




Reference wave

Complex amplitude of a reference wave

e plane wave with direction Xy
vector Ny = (Ngy, Nryr Nk2),
Ing| =1
and amplitude A;
let us ignore constant phase
(= ¢ =0)
Ur(X, ¥, 0) = Az exp(-jlkng - X + @]) =
= Ag exp(-jk[xng, + yng,l)

Computer generated holography: 3D vision and beyond 51/120



refwave = zeros(res y, res X);
ref x = cos(89.9 * pi/180) * k;
ref y = cos(90 * p1i/180) * k;

for column = l:res x
for row = 1l:res y

X = (column-1) * sampling + corner X;
y = (row-1) * sampling + corner y;
refwave(row,column) =

exp(i*(ref x * x + ref y * y));

endfor
endfor




Reference wave

Real part of the reference wave
(Just for information;
it has no physical meaning!)

Computer generated holography: 3D vision and beyond 53/ 120




Hologram calculation

Intensity calculation
¢ I(XI yl O) — |UR(XI yl O) + UP(XI yl O)|2
= [Ur(Xx, ¥, 0) + Us(Xx, y, 0)] X
X [UR(XI yl O) + UP(XI yl O)]*
= U U™ + UpUps* + UyU* + UpUR™

H_J H_J -
a b C

a) reference wave intensity

b) object points interference (if U, is a complex wave)

Cc) object points and reference wave interference
(bipolar intensity)

Computer generated holography: 3D vision and beyond 54 /120



hologram = objectwave + refwave;
hologram = hologram .* conj(hologram);

e alternative (bipolar intensity):

hologram = real(objectwave) .* real(refwave) +
imag(objectwave) .* imag(refwave)




Hologram calculation

7

OBject wave

Reference wave

The hologram (intensity picture)

Computer generated holography: 3D vision and beyond 56/ 120



Hologram calculation

Computer
generated
hologram

6144 x 6144 pixels
Size 4,3 x 4,3 cm?
(resolution 3600 dpi
~ pixel size 7 um)

Computer generated holography: 3D vision and beyond 57/ 120



o Hologram portrayal

Static high resolution holograms

e electron beam litography
— 0.1 pym details
= diffraction up to 90°
- extremly expensive,
recording 1 mm?2/min
e |aser litography
— 1 pym details
= diffraction up to 20°
— VEery expensive, -
recording 4 mm?2/min Hologram by K. Matsushima

Computer generated holography: 3D vision and beyond 58 /120



Hologram portrayal

Home made static holograms

e Imagesetter
— 10 ym details
= diffraction up to 2°
— price ~ 5 € per A4
e |aser printer
— 100 pm details
= diffraction up to 0.5°

Hologram by I. Hanak, M. Janda

Computer generated holography: 3D vision and beyond 59/ 120



o Hologram portrayal

Laboratory holographic displays

e based on DMD chips
(DLP projectors),
phase only spatial light
modulators or
acousto-optic modulators:
(Bilkent University,
MIT Media Lab, ...)
e based on intermediate optical
photorefracive memory
(University of Arizona) DMD chip by Texas Instruments

Computer generated holography: 3D vision and beyond 60/ 120



Hologram portrayal

Early stage commercial displays

e Zebra Imaging

e SeeReal Technologies
spatial light modulators
plus eye tracking
QinetiQ
spatial light
modulator
plus intermediate

optical memory \ Y.
Zebra Imaging ZScape motion display

Computer generated holography: 3D vision and beyond 61/ 120



Digital holography applications

Digital holographic microscopy

e acquisition of digital hologram

e numerical reconstruction

= signal filtering, unwanted diffraction removal,
numerical analysis, ... CCD

mirror splitter

/ microscope
objective

pinhole lens splitter lens sample

/ mirror

Computer generated holography: 3D vision and beyond 62/ 120




Surface metrology

e real object numerical reconstruction
e reconstructed phase ~ surface bumpiness

pinhole  lens splitter sample

splitter

lens |
== >|<
splitter

sy
i,
7%,
~
%
o

L7

/,/I
7
7




Comparative digital holography

e hologram of master sample (A) |
e reconstruction of master to object B onect B

real
image

splitter

pinhole lens

=

unwrapped phase (Jiptner, Schnars: Digital Holography)




Signal processing

e conversion between plane and spherical wave:
convex lens of focal length f

lens

e

l focused
point points
sources




Digital holography applications

Signal processing

e complex amplitude of plane wave at plane z = 0:
U(x, y) = As exp(-jlax + by])

e a, b depend on wave inclination

e jllumination with many plane waves:
U(x, y) = Il Asp exp(=jlax + by]) dadb

= can be considered as Fourier transform of A,,

e Fourier transform (not a proper definition!):
FT{A(a, b)} = JioJie A exp(=jlax + by]) dadb

Computer generated holography: 3D vision and beyond 66 /120



Signal processing

e 2f system - optical Fourier transform unit

e 4f system - optical filtering system

pinhole lens CcCD

/ens xx x

—)—

plnho/e
/en

—




Holographic memory

splitter SLM hologram

laser —» I %

mirror

) |§
X

multiple exposure
of single hologram

splitter hologram

S

mirror

X

selective reconstruction by
reconstruction wave change




Holographic memory

e spatial light modulator (SLM) A: data
e SLM B: address

splitter SLM A hologram splitter hologram

- |< =

< <

multiple exposure selective reconstruction by
of single hologram reconstruction wave change




Holographic cryptography
e SLM A: data, SLM B: key
e wrong key reconstruction: scrambled output

splitter SLM A hologram splitter hologram

laser | I % laser %

SLM B SLM B

correct key reconstruction

laser

encryption wrong key reconstruction




Rayleigh-Sommerfeld integral

I ue, n, 0) x

hologram .
. 1 exp(-jkr)z
x (-jk - 1) ZREID 2 e g

U(XI YI ZO)

21'r

r=[x-£&?>+
+ (y - n)? n
+ z42]? /I '3 r




Numerical propagation

Discrete calculation

e discretization of areas to M x N samples

e samples distance A
o x=(mM-M/2)A,y=(n-N/2)A
1 M-1 N-1

2 2 Ulm, nlK[p-m,q-n]

m=0n=0

* Ulp, gl = -5

1 exp(-jkr) z,

Klp, q] = (-jk - r) p -

r=[(pA)? + (gAY + 2]V

Computer generated holography: 3D vision and beyond 72 /120



Numerical propagation

Discrete calculation
1 M-1 N-1
Ulp, q] = -5 2 2 Ulm,nlK[p-m,q-n]
m=0n=0
p=0 m=M-1, g=0,n=N-1
= minimal indices K: -(M - 1), -(N - 1)
p=M-1, m=0, g=N-1,n=20
= maximal indices K: +(M -1), +(N - 1)

K has to be known in (2M - 1) x (2N - 1) samples

Computer generated holography: 3D vision and beyond 73/ 120



Numerical propagation

Discrete cyclic convolution
e padding U[m, n] with zeros to (2M - 1) x (2N - 1)

2M-2 2N-2

. U[p,q]——ﬁz ZU[m n] x

X K[p—-—m(mod2M-1),g-n (mod 2N - 1)]

1
= ->—IDFT{DFT(U) © DFT(K)}

DFT discrete Fourier transform
IDFT inverse discrete Fourier transform
® element-by-element multiplication

Computer generated holography: 3D vision and beyond 74 / 120



Numerical propagation

Discrete cyclic convolution
e exampleforM =N =4

+3

-3 -2 -1 0 +1 +2 +3 O +1 +2 +3 -3 -2 -1
>0=>1=>2=>3=>4=>5=6

structure of K structure of K_

Computer generated holography: 3D vision and beyond 75/ 120



propag z = -0.5;

kernel = zeros(2*res y, 2*res Xx);
if (propag z < 0) ii = -1i; else 1i = 1i; endif

for column = 1l:2*res x
for row = 1l:2*res vy

if (column < res Xx)

X = (column-1) * sampling;
else

X = (column-2*res x-1) * sampling;
endif




if (row < res y)

y = (row-1) * sampling;
else

y = (row-2*res y-1) * sampling;
endif

r2 = x**2 + y**2 + propag z**2;
kernel(row,column) =
ii * k * exp(ii*k*sqrt(r2)) / r2;

endfor
endfor







Numerical propagation

field = zeros(2*res y, 2*res Xx);

field(l:res y, l:res x) = hologram;

FTfield = fft2(field);
FTkernel = fft2(kernel);

FTfield2 = FTfield .* FTkernel;

field2 = ifft2(FTfield2);
image = field2(l:res y, l:res Xx);

Computer generated holography: 3D vision and beyond

real(field)

o
o

I(kernel)

79/ 120



Numerical propagation

Numerical simulation

of hologram propagation
(Intensity picture — this
would be actually captured)

Computer generated holography: 3D vision and beyond 80/ 120



Numerical propagation

Optical reconstruction

Numerical reconstruction

Computer generated holography: 3D vision and beyond 81/ 120



Numerical propagation

e forward propagation
- in the z+ axis direction
- hologram propagation — in a distance z, > 0
real image appears — on-screen projection
— original complex field propagation
Us(X, ¥, 0) — no real image on z+ axis
e backward propagation
— propagation to a distance z, < O
— convolution kernel K. has to be
complex conjugate

Computer generated holography: 3D vision and beyond 82 /120



Numerical propagation

Lens simulation

1. propagation to a distance r: phase shift kr

2. propagation in a lens: phase shift ¢

3. propagation to a distance r': phase shift kr'

e all contributions in phase in point X'

= phase function of a lens ¢ = —-(kr + kr')

=>in (X, Yy, 0): @ = =k[(xX?+y?+a?)V? + (x°+y?+a'?)¥?]

Computer generated holography: 3D vision and beyond 83/ 120



e object replacement with a point cloud
- extraordinary number of lights needed = slow
— does not count with visibility
— easy parallelization = fast for thousands of points




e object replacement with a flat image
- the same as hologram propagation — use of DFT
— not for a 3D scene

/
/




e object replacement with series of flat images
— propagation A—-H, B—-H, C—H, sum
— simulation of 3D scene, use of DFT
— does not count with visibility




e step-by-step propagation
- propagatiom A—B, masking,
B—C, masking, C—H
— enables to replace 3D scene with several slices




e general step-by-step propagation
— rotation A—A', propagation A'-B’,
rotation B'—B, masking, rotation B—B’,
propagation B'-C', ...
— enables to render a scene with textured polygons

A’ B' C
AX m B C y H




e point cloud rendering enhanced with ray casting
for visibility testing
- extremly slow

invisible = does not contribute single
hologram
point

visible = contributes




e scene breakup to rectangular patches
— common visibility solution
for a number of point sources
and a number of hologram points

area of a
hologram

scene visible = contributes
approximation

invisible = does not contribute




e analytic triangle patch propagation formula
— visibility solution in one view only (mostly)
— problem with diffuse surface reflection

e analytic line propagation formula
— for wireframe models




Hologram of a 3D scene

precalculated table of point sources fields,

their fast summation on GPU

approximation of light propagation

— Rayleigh-Sommerfeld convolution 3x DFT

— angular spectrum decomposition 2x DFT,
direct calculation of DFT(kernel)

- Fresnel approximation 1x DFT, paraxial

— Fraunhofer approximation 1x DFT, paraxial,
big distances

Computer generated holography: 3D vision and beyond 92/ 120



Angular spectrum decomposition

e a plane wave hitting plane z = 0O:
U(x,y,0) = A exp{-jk(ax + by)}
propagation vector n = (a, b, [1 - a? — b?]¥?)
a=n-(1,0,0) =cos 6,
b=n-(0,1,0) =cos 9,
many plane waves hitting plane z = 0O:
U(x,y,0) = [Tolte A(a/A,b/N)

exp{-jk(ax + by)} dadb

with A(a/A,b/A) = 0 for |a| > 1, |b| > 1
definition of A(a/A,b/A) instead of clearer A(a, b)
will be advantageous in a while

} direction cosines
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more often: f, = a/A, f, = b/A

l.e.
U(lelo) - f+oo +oo ( y)
exp{-2mj(f,x + f,y)} df, df,
= FT{ A(f.1,) &

FT-'{ U(x,y,0) }
= JTelte U(x,y,0)
exp{2mj(f,x + f,y)} dxdy




Angular spectrum decomposition

e a plane wave hitting plane z = z,:
U(x,y,z,) = A exp{-jk(ax + by + cz,)}
= A exp{-jk(ax + by)} exp{-jkz,c}
= A exp{-jk(ax + by)}
exp{-jkz,[1 - a* - b*]V?)}
e many planes hitting plane z = z,:
U(XI yIZO) = ftg,ﬁg A(fXI fy)
exp{-j2mizy[1/A* - £ + f2]Y2)}
exp{-j2m(f,x + f,y)} df, df,
= FT{ A(f,,f,)
exp{-j2nz,[1/A* - £ + f2]2)}}
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Angular spectrum decomposition

Angular spectrum propagation
input: U(x, y, 0)
output: U(x, y, z,)
calculation:
A(f,f,) =FTi{ U(x,y,0) }
U(x,y,zo) = FT{ A(f., 1))
exp{-j2nz,[1/N*> = £2 + £2]?)}}

e mathematically equivalent to the R-S convolution
e just two Fourier transforms
e numerically easier for small z,

(R-S is better for bigger z, — see kernel sampling)
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Fresnel approximation

Rayleigh-Sommerfeld solution

I ue, n, 0) x

hologram .
.. L.exp(-jkr) z,
x (=jk = —)————"d& dn

U(XI YI ZO) 21T

F= 0= 82+ (y - )2 + 2712
Zo [1 + (X = 8)*/z* + (y — n)*/zy°]"?
=7y [1 + (X = §)/2zy* + (y — n)*/224°]
Zy + (X = 8)°/2z, + (y — n)*/2z,
=Zo + (X* + y?)/2Z, + (&2 + N?)/22, - (X + yn)/Z,
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For z, > X, vy:

I ue, n, 0) x

hologram .
L 1. exp(-jkr) z,
x (-jk = =)= d& dn

U(XI YI ZO) — 21T

exp( Jkr)

dé dn

I uc, n, o)

hologram

I uc&, n, 0) exp(=ikr) d& dn

2TI'Z 0 hologram




exp(-jk[z, + (xX? + y?)/2z, +

(& +n?)/2z, - (x& + yn)/z,]) d& dn

exp(-jkz,) exp(—jk(x* + y?)/2z,) X

LS
- 2T11Z,
I U n, 0) exp(=ik(&2 + n2)/2z,) x

hologram

exp(-j2m(x§ + yn)/Az,) dé dn




__Jk
- 2T1Z,
FT{ U(S, n, 0) exp(-jk(&* + n?)/2z,)

exp(-Jkz,) exp(-jk(x* + y?)/2z,) X

where after FT calculation substitute
f, = xX/Az,
f, = y/A\z,

e approximation valid for on-axis case, big z,
zy’ > /4N max{[(x - §)* + (y - n)*]*}
e just one Fourier transform




e classical H1 - H2 process
1. make a classical hologram (H1)

reference light

object light




e classical H1 - H2 process
2. illuminate H1 with a conjugate wave
3. make a hologram of a hologram (H2)

reference reconstruction
light light




e classical H1 - H2 process
4. illuminate H2 with a conjugate wave
— an orthoscopic image, viewing aperture H1

reconstruction light

H1 shape

reconstructed ‘e,
light




classical white light hologram
- H1 - hologram of a scene

“viewed through a narrow window”
digitally: slow calculation, small H1 surface

reference light




e classical white light hologram
- H2 - hologram of the H1 hologram
o digitally: no visibility checks = fast calculation

reference reconstruction
light light




e classical white light hologram reconstruction
- resembles view through a narrow window
— horizontal parallax only image

reconstruction light

reconstructed
“window”

reconstructed virtual object




e classical white light hologram reconstruction
- *wrong” reconstruction color shifts reconstruction
- H2 extracts “the right” color from white light

reconstruction light
with “wrong” color

P

reconstructed “window”
is not in front of the eyes

shifted virtual object




e white light hologram structure
— just “bold” points will be visible due to rays
in the cutting plane

reference light

cutting




e white light hologram structure
— in H2 recording, those “bold” point will affect
only a part of the H2
= “bold” points affect a part of H2 only

H1

777, ‘;

reference reconstruction
light light




e digital white light HPO hologram (1)
— split the H2 into parts — hololines
— just one line of the hololine is considered
— calculate the hololine using “bold” points only

fixed
cutting observation
plane window
A
— hololine / /
/ y

cutting plane passes though the window
and the particular hololine




e digital white light HPO hologram (2)
— assume the “bold” points to be lines
= they emit cylindrical wave
= object wave constant in vertical direction

cylindrical

object fixed
wave : ot?servat/on
window

A
— hololine / /

|4




o digital white light HPO hologram (3)
— hololine has the area width x height
— object wave in every horizontal line (subline) is
the same = calculate once & copy

cylindrical
object fixed
wave observation

] window
~——sublines

A
— hololine / /

|4




o digital white light HPO hologram (4)
— in reconstruction, the wave from a hololine
should hit the observation window

econstruction light

r ructi ig fixed
observation
window

y A
/ hololine 0 / j / /
R — v
hololine N /ﬂ

74




e digital white light HPO hologram (4)
- the light has to change its angle from 6,, to 6, \
- in hololine N, add reference wave with angle
SinB,. = sinB,, — sinB_,

reconstruction light )
. L fixed

\ observation
window

Ve 7

|4

hololine N




e classical holographic stereogram (1)
- record left image to the left part of H1 only

/ reference light




e classical holographic stereogram (2)
— record right image to the right part of H1 only

/ reference light




e classical holographic stereogram (3)
— record H2 in a common way

reference reconstruction
light light




e classical holographic stereogram (4)
- after illumination, the left eye watches the left
image, the right eye watches the right image

reconstruction light

reconstructed
"windows”

reconstructed virtual objects




o Hologram of a 3D scene

e digital holographic stereogram
— visibility solving in particular directions using
computer graphics (ray optics)
hologram has to
display right image
in the right
direction
compatible with
common
Imaging cameras

Holographic stereogram by Geola Digital
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