

FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CENTRE OF COMPUTER GRAPHICS AND VISUALIZATION

PLZEŇ CZECH REPUBLIC

http://graphics.zcu.cz

COMPUTER GENERATED HOLOGRAPHY 3D VISION AND BEYOND

Petr Lobaz

University of West Bohemia Pilsen, Czech republic lobaz@kiv.zcu.cz

Plzeň September 2013

Contents

- what is 3D and why photography fails?
- light and interference
- how to get an ideal "photograph"
- grating principle
- classical hologram recording and observation
- applications of classical holography
- computer generated hologram and its display
- applications of digital holography
- advanced methods of computer generated holography

3D image

3D image

3D image

Photography

Thin lens formula

Photography

Original points reconstruction

- perfect for points in focus only
- loss of information

Hologram principle

Light diffraction

• depends mainly on frequency f of the pattern output angle of the rays: $\sin \theta_{out} = m\lambda f + \sin \theta_{in}$

Hologram principle

Hologram watching

- illuminate hologram with a light source
- light beams start to diffract on the pattern as if the original object was still present

Nature of the light

- force interaction between (oscillating) point charges
- point source of a light:
 movement up and down ~ A cos(ωt φ)
- force (field) in a distance *r*:

$$u(t, r) = \frac{A}{r} \cos(\omega[t - \frac{r}{c}] - \varphi) = A' \cos(\omega t - \varphi'(r))$$

- photographic emulsion reacts on intensity: (A')²
- ⇒ cannot tell close "darker light" from distant "brighter light"

Computer generated holography: 3D vision and beyond

r_1 r_2 $\frac{A}{r_1}\cos(\omega[t-\frac{r_1}{c}])$ $\frac{A}{r_2}\cos(\omega[t-\frac{r_2}{c}])$ 1.7 · 10⁻¹⁵ s period of oscillation • $\omega = 2\pi/T$ angular frequency • f = 1/T frequency speed of the light 0.5 · 10⁻⁶ m • $\lambda = cT$ wavelength • $k = 2\pi/\lambda$ wavenumber 1.2 · 10⁷ m⁻¹

 P_1

C

 P_2

11 / 120

Interference

Computer generated holography: 3D vision and beyond

12 / 120

Interference

constructive
 ×
 destructive
 interference

Perfect picture

- image of X in ρ : amplitude 0 except of X' ($\rightarrow \infty$)
- image of Y in ρ ': amplitude 0 except of Y' ($\rightarrow \infty$)
- image of Y in ρ: amplitude and phase from Y'

Perfect picture

ρ

- reconstruction of X': point X
- reconstruction of "blurry" Y': constructive interference in Y'
 - \Rightarrow reconstruction of Y

Perfect picture

- phase is critical for 3D image how to capture it?
- no need for a lens anymore
- observation from A: pseudoscopic image
- observation from B: orthoscopic image

Complex notation

- $j^2 = -1$
- $e^{jx} = \cos x + j \sin x$
- $A \cos(\omega t \varphi) = \operatorname{Re}\{A e^{j(\omega t \varphi)}\}\$

•
$$e^{jx} + e^{jy} = 2\cos(\frac{x-y}{2})\exp(j\frac{x+y}{2})$$

•
$$e^{jx} + e^{-jx} = 2\cos x$$

• intensity of $U = A e^{j(\omega t - \varphi)}$ $|U|^2 = UU^* = A e^{j(\omega t - \varphi)} A e^{-j(\omega t - \varphi)} = A^2$

Complex notation

Advantage of phasor arithmetic

- optical fied time dependent function:
 u(t, r) = A cos(ωt φ(r))
- its phasor (complex amplitude):
 U(r) = A exp(-jφ(r))
- sum of optical fields: $A_1 \cos(\omega t - \varphi_1(r)) + A_2 \cos(\omega t - \varphi_2(r)) + \dots = ?$
- in phasor arithmetic: $A_1 \exp(-j\varphi_1(r)) + A_2 \exp(-j\varphi_2(r)) + \cdots = U_{sum}(r)$
- optical field (if needed): $u_{sum}(t, r) = \text{Re}\{U_{sum}(r) e^{j\omega t}\}$

Basic wavefront shapes

Spherical wavefront

- $u(t, r) = \frac{A}{r} \exp(j[\omega t kr \varphi])$
 - $= \frac{A}{r} \exp(j\omega t) \exp(-j[kr + \varphi])$
- complex amplitude: $U(r) = \frac{A}{r} \exp(-j[kr + \phi])$
- resembles a plane
 in a big distance

amplitude

19 / 120

Basic wavefront shapes

Plane wavefront

- wavefront normal n, |n| = 1
- wavefronts period λ
- wave vector $\mathbf{k} = k\mathbf{n} = 2\pi/\lambda\mathbf{n}$
- point in space $\mathbf{x} = (x, y, z)$
- wavefront plane equation
 k · **x** = const.
- $U(\mathbf{x}) = A \exp(-j[\mathbf{k} \cdot \mathbf{x} + \phi])$
- rays: "directions perpendicular to wavefronts"

amplitude

20 / 120

Computer generated holography: 3D vision and beyond

slit of almost zero width

$$U(r_{in}) = \frac{A}{r_{in}} \exp(-j[kr_{in} + \phi])$$

• complex amplitude behind the opaque screen $U(r_{out}) = \frac{A'}{r_{out}} \exp(-j[kr_{out}])$

Multiple slit diffraction

• *m*-th diffraction maximum: $\sin \theta_{out} = m \cdot \lambda/d$

Multiple slit diffraction

- change of period \Rightarrow change of diffraction angles
- change of illumination angle (not shown)
 - $\Rightarrow \sin \theta_{\text{out}} = m \cdot \lambda / d + \sin \theta_{\text{in}} \qquad (grating equation)$

- screen in a plane z = 0
- two slits in a distance d
- angle of observation θ_{out} in a distance $r_{out} \gg d$
- change in θ_{out}
 - ⇒ change in mutual "shift" of rays
 - ⇒ change of interference

• their sum:

$$2A'/r_{out} \cos \frac{\varphi_0 - \varphi_1 + kd\sin \theta_{out}}{2} \times \exp(-j[kr_{out} + \frac{\varphi_0 + \varphi_1 + kd\sin \theta_{out}}{2}])$$

- ±1st diffraction maximum: $\frac{\varphi_0 - \varphi_1 + kd\sin\theta_{out}}{2} = \pm \pi$
- *m*-th diffraction maximum: $\varphi_0 - \varphi_1 + kd\sin\theta_{out} = m \cdot 2\pi$

Computer generated holography: 3D vision and beyond

26 / 120

- screen lighting by a plane wave at an angle θ_{in}
- $\varphi_1 = \varphi_0 + kd\sin\theta_{in}$
- *m*-th diffraction maximum: $\varphi_0 - \varphi_1 + kd\sin\theta_{out} = m \cdot 2\pi$
- after substitution: $-kd\sin\theta_{in} + kd\sin\theta_{out} = m \cdot 2\pi$ $\sin\theta_{out} = m\lambda/d + \sin\theta_{in}$ (grating equation)

Amplitude diffraction grating

opaque screen
 with thin N slits, d
 period d

Amplitude diffraction grating

- other transmittance profiles:
 - different slit width
 - different transmittance shape
 - \Rightarrow different brightness of maxima

- transmittance profile

 τ(x) = (1 + cos(2πx/d))/2

 the only important maxima:
 - $m \in \{0, +1, -1\}$

Cosine pattern diffraction

• plane wave $U(\mathbf{x}) = \exp(-i[\mathbf{k} \cdot \mathbf{x}])$ passing through a pattern with cosine transmittance profile: $U(\mathbf{x})|_{z=0} = [1 + \cos(2\pi x/d)]/2 \exp(-j[\mathbf{k} \cdot \mathbf{x}])$ $= \frac{1}{2} \exp(-j[\mathbf{k} \cdot \mathbf{x}]) + \frac{1}{2} \cos(2\pi x/d) \exp(-j[\mathbf{k} \cdot \mathbf{x}])$ $=\frac{1}{2}\exp(-j[\mathbf{k}\cdot\mathbf{x}])$ + $\frac{1}{4} \left[\exp(-j2\pi x/d) + \exp(j2\pi x/d) \right] \exp(-j[\mathbf{k} \cdot \mathbf{x}])$ $=\frac{1}{2}\exp(-j[\mathbf{k}\cdot\mathbf{x}])$ $+ \frac{1}{4} \exp(-j[\mathbf{k}_{+1} \cdot \mathbf{x}]) + \frac{1}{4} \exp(-j[\mathbf{k}_{-1} \cdot \mathbf{x}])$

Cosine profile recording

Cosine profile recording

plane wave complex amplitude: A exp(-j[k · x]) inclination θ_A: k = k(sin θ_A, 0, cos θ_A) in the plane z = 0: x = (x, y, 0)

$$\Rightarrow \boldsymbol{k} \cdot \boldsymbol{x} = kx \sin \theta_{A}$$

- intensity of sum of plane waves from angles θ_A , θ_B : $|A \exp(-j \mathbf{k}_A \cdot \mathbf{x}) + A \exp(-j \mathbf{k}_B \cdot \mathbf{x})|^2 =$
 - = $(A \exp(-j \mathbf{k}_{A} \cdot \mathbf{x}) + A \exp(-j \mathbf{k}_{B} \cdot \mathbf{x})) \times (A \exp(j \mathbf{k}_{A} \cdot \mathbf{x}) + A \exp(j \mathbf{k}_{B} \cdot \mathbf{x})) =$
 - $= 2A + 2A\cos(\boldsymbol{k}_{A}\cdot\boldsymbol{x} \boldsymbol{k}_{B}\cdot\boldsymbol{x}) =$
 - $= 2A \{1 + \cos(k[\sin\theta_{A} \sin\theta_{B}]x)\}$
- frequency of the pattern $f = (\sin \theta_A \sin \theta_B)/\lambda$

Sin θ equation

- grating equation: $\sin \theta_{out} = m\lambda/d + \sin \theta_{in} = m\lambda f + \sin \theta_{in}$
- after manipulation: $\sin \theta_{out} = m(\sin \theta_A - \sin \theta_B) + \sin \theta_{in}$
- example: m = +1, $\sin \theta_{B} = \sin \theta_{in}$
- $\Rightarrow \sin \theta_{\rm out} = \sin \theta_{\rm A}$

Hologram

- object wave: θ_{obj} (= θ_A), $\lambda = \lambda_{ref}$
- reference wave: θ_{ref} (= θ_B), $\lambda = \lambda_{ref}$
- illumination wave: θ_{ill} (= θ_{in}), $\lambda = \lambda_{ill}$
- $\sin \theta_{\text{out}} = m \frac{\lambda_{\text{ill}}}{\lambda_{\text{ref}}} (\sin \theta_{\text{obj}} \sin \theta_{\text{ref}}) + \sin \theta_{\text{ill}}$
- example: $\lambda_{ill} = \lambda_{ref}$, $\theta_{ill} = \theta_{ref} = 0$

Hologram recording

Hologram watching

Light diffraction

• depends mainly on frequency f of the pattern output angle of the rays: $\sin \theta_{out} = m\lambda f + \sin \theta_{in}$

Virtual image creation

- illuminate hologram with a light source
- light beams start to diffract on the interference pattern as if the original object was still present

Real image creation

- output angle of the rays: $\sin \theta_{out} = m\lambda f + \sin \theta_{in}$
- for m = -1, rays create real image of the scene
- both rays for m = +1 and −1 appear at once
 ⇒ no need to distinguish between them

Computer generated holography: 3D vision and beyond

Hologram recording

Basic setups

- in-line (Gabor) hologram
 - for transparent objects
 - image damaged by 0th order
 - low spatial frequencies
- off-axis (Leith-Upatnieks) hologram

laser

ref. w

mirro

- for opaque objects
- clear image
- high spatial frequencies (over 1000 lines/mm)
- aberrations

Hologram principle proof

- hologram: recording of the interference of the object wave O and the reference wave R:
 I = (O + R) (O + R)* = OO* + RR* + OR* + O*R
- after illumination by the copy of the reference wave:
 U = IR
 - = (OO*)R + (RR*)R + O(RR*) + O*(RR)

diffracted illumination wave attenuated illumination wave **copy of the object wave** conjugate image

3D display holography

- reconstruction wave (hologram illumination) the same as reference wave (in recording process)
- \Rightarrow observation of the original object

Hologram created by Šárka Němcová, ČVUT Praha

Computer generated holography: 3D vision and beyond

3D display holography

- reconstruction wave changes the angle
- ⇒ observation of the (deformed) original object from a varying viewpoint

Holography applications

- microscopy, optical metrology
 - perfect light recording (biological sample, bubble chamber, ...)
 - hologram examination (unlimited time of observation, safe environment, ...)
- enhancing electron microscopy
 - original Gabor idea behind holography
 - hologram recording with electron beam $(\lambda \text{ is } 100000 \times \text{ smaller than for visible light})$
 - hologram enlargement, visible light illumination
 ⇒ image 100000× bigger

Holography applications

- diffractive (holographic) optical elements
 - mimicking any optical element
 - cheaper, easier abberation correction, ...

diffractive optical element recording

diffractive optical element usage

Holography applications

- non-destructive testing
 - double object recording on one hologram
 - microshifts cause interference strips
 - vibration causes loss of interference strips

Molin and Stetson, Institute of Optical Research, Stockholm (1971)

Hologram creation mathematically

for every point (x, y) of the hologram:

- get the amplitude A_{obj} and the phase φ_{obj} of the object wave in (x, y)
- get the amplitude A_{ref} and the phase φ_{ref} of the reference wave in (x, y)
- calculate captured intensity in (x, y) $I(x, y) = |A_{obj} \exp(-j \varphi_{obj}) + A_{ref} \exp(-j \varphi_{ref})|^2$

Object wave

Complex amplitude of a point source

- point source P at (x_P, y_P, z_P), z_P < 0
 light amplitude A_P, phase φ_P, wavelength λ ≅ 630 nm (⇒ k = 2π / λ ≅ 10⁷)
- hologram plane z = 0

•
$$U_{\rm P}(x, y, 0) = \frac{A_{\rm P}}{r_{\rm P}} \exp(-j[kr_{\rm P} + \varphi_{\rm P}])$$

 $r_{\rm P} = [(x - x_{\rm P})^2 + (y - y_{\rm P})^2 + z_{\rm P}^2]^{1/2}$

$$\begin{array}{c} xy \\ U_{P}(x, y, 0) \\ z \end{array}$$

Really unoptimized Matlab code

lambda	=	630e-9;
k	=	2*pi/lambda;
res_x	=	200;
res_y	=	200;
hologram_z	=	Θ;
sampling	=	20e-6;
corner_x	=	-(res_x-1) * sampling / 2;
corner_y	=	-(res_y-1) * sampling / 2;
sources	=	[0, 0, -0.5; 20*sampling, 0, -0.5;
		-40*sampling, 20*sampling, -0.5];

Object wave


```
objectwave = zeros(res y, res x);
for source = 1:rows(sources)
  for column = 1:res x
    for row = 1: res y
      x = (column-1) * sampling + corner_x;
      y = (row-1) * sampling + corner y;
      objectwave(row,column) +=
         exp(i*k*sqrt((x-sources(source, 1))**2
          + (y-sources(source, 2))**2
          + (hologram z - sources(source, 3))**2));
    endfor
  endfor
endfor
```

Object wave

Real part of the object wave (Just for information; it has no physical meaning!)

Computer generated holography: 3D vision and beyond

50 / 120

Reference wave

Complex amplitude of a reference wave

- plane wave with direction vector n_R = (n_{Rx}, n_{Ry}, n_{Rz}), |n_R| = 1 and amplitude A_R
- let us ignore constant phase $(\Rightarrow \phi = 0)$
- $U_{R}(x, y, 0) = A_{R} \exp(-j[k\mathbf{n}_{R} \cdot \mathbf{x} + \phi]) =$ = $A_{R} \exp(-jk[xn_{Rx} + yn_{Ry}])$

Reference wave


```
refwave = zeros(res_y, res_x);
ref_x = cos(89.9 * pi/180) * k;
ref_y = cos(90 * pi/180) * k;
```

Reference wave

Real part of the reference wave (Just for information; it has no physical meaning!)

Computer generated holography: 3D vision and beyond

53 / 120

Intensity calculation

- $I(x, y, 0) = |U_{R}(x, y, 0) + U_{P}(x, y, 0)|^{2}$ $= [U_{R}(x, y, 0) + U_{P}(x, y, 0)] \times [U_{R}(x, y, 0) + U_{P}(x, y, 0)]^{*}$ $= U_{R}U_{R}^{*} + U_{P}U_{P}^{*} + U_{R}U_{P}^{*} + U_{P}U_{R}^{*}$
- a) reference wave intensity
- b) object points interference (if U_P is a complex wave)
- c) object points and reference wave interference (bipolar intensity)

hologram = objectwave + refwave; hologram = hologram .* conj(hologram);

• alternative (bipolar intensity):

```
hologram = real(objectwave) .* real(refwave) +
    imag(objectwave) .* imag(refwave)
```

Hologram calculation

Computer generated holography: 3D vision and beyond

56 / 120

Hologram calculation

Computer generated holography: 3D vision and beyond

Static high resolution holograms

- electron beam litography
 - 0.1 µm details
 - \Rightarrow diffraction up to 90°
 - extremly expensive, recording 1 mm²/min
- laser litography
 - 1 μ m details
 - \Rightarrow diffraction up to 20°
 - very expensive, recording 4 mm²/min

Home made static holograms

- imagesetter
 - 10 µm details
 - \Rightarrow diffraction up to 2°
 - price ~ 5 € per A4
- laser printer
 - 100 µm details
 - \Rightarrow diffraction up to 0.5°

Hologram by I. Hanák, M. Janda

Laboratory holographic displays

- based on DMD chips (DLP projectors), phase only spatial light modulators or acousto-optic modulators: (Bilkent University, MIT Media Lab, ...)
- based on intermediate optical photorefracive memory (University of Arizona)

Early stage commercial displays

- Zebra Imaging
- SeeReal Technologies spatial light modulators plus eye tracking
- QinetiQ spatial light modulator plus intermediate optical memory

Zebra Imaging ZScape motion display

Digital holography applications

Digital holographic microscopy

- acquisition of digital hologram
- numerical reconstruction
- ⇒ signal filtering, unwanted diffraction removal, numerical analysis, ...

Digital holography applications

Surface metrology

- real object numerical reconstruction
- reconstructed phase ~ surface bumpiness

captured phase unwrapped phase (Jüptner, Schnars: Digital Holography)

Computer generated holography: 3D vision and beyond

Comparative digital holography

- hologram of master sample (A)
- reconstruction of master to object B

captured phase

unwrapped phase (Jüptner, Schnars: Digital Holography)

Computer generated holography: 3D vision and beyond

Signal processing

 conversion between plane and spherical wave: convex lens of focal length *f*

Signal processing

- complex amplitude of plane wave at plane z = 0:
 U(x, y) = A_{ab} exp(-j[ax + by])
- *a*, *b* depend on wave inclination
- illumination with many plane waves: $U(x, y) = \int_a \int_b A_{ab} \exp(-j[ax + by]) da db$
- \Rightarrow can be considered as Fourier transform of A_{ab}

• Fourier transform (**not a proper definition!**): $FT{A(a, b)} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A_{ab} \exp(-j[ax + by]) da db$

Signal processing

- 2f system optical Fourier transform unit
- 4*f* system optical filtering system

Computer generated holography: 3D vision and beyond

67 / 120

Digital holography applications

Holographic memory

Digital holography applications

Holographic memory

- spatial light modulator (SLM) A: data
- SLM B: address

Holographic cryptography

- SLM A: data, SLM B: key
- wrong key reconstruction: scrambled output

Rayleigh-Sommerfeld integral

$$U(x, y, z_{0}) = -\frac{1}{2\pi} \iint_{hologram} U(\xi, \eta, 0) \times (-jk - \frac{1}{r}) \frac{\exp(-jkr)}{r} \frac{z_{0}}{r} d\xi d\eta$$
$$r = [(x - \xi)^{2} + (y - \eta)^{2} + z_{0}^{2}]^{1/2}$$

Numerical propagation

Discrete calculation

- discretization of areas to $M \times N$ samples
- samples distance Δ
- $x = (m M/2)\Delta, y = (n N/2)\Delta$
- $U'[p, q] = -\frac{1}{2\pi} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} U[m, n] K[p m, q n]$

$$K[p, q] = (-jk - \frac{1}{r})\frac{\exp(-jkr)z_0}{r}$$

$$r = [(p\Delta)^2 + (q\Delta)^2 + z_0^2]^{1/2}$$

Discrete calculation

•
$$U'[p, q] = -\frac{1}{2\pi} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} U[m, n] K[p - m, q - n]$$

•
$$p = 0, m = M - 1; q = 0, n = N - 1$$

 \Rightarrow minimal indices $K: -(M - 1), -(N - 1)$

•
$$p = M - 1, m = 0; q = N - 1, n = 0$$

 \Rightarrow maximal indices K: $+(M - 1), +(N - 1)$

• K has to be known in $(2M - 1) \times (2N - 1)$ samples

Discrete cyclic convolution

• padding U[m, n] with zeros to $(2M - 1) \times (2N - 1)$

•
$$U'[p, q] = -\frac{1}{2\pi} \sum_{m=0}^{2M-2} \sum_{n=0}^{2M-2} U[m, n] \times$$

× $K_c[p - m \pmod{2M - 1}, q - n \pmod{2N - 1}]$

$$= -\frac{1}{2\pi} IDFT \{ DFT(U) \odot DFT(K) \}$$

DFT discrete Fourier transformIDFT inverse discrete Fourier transform⊙ element-by-element multiplication

Discrete cyclic convolution

• example for M = N = 4

structure of K

structure of $K_{\rm c}$


```
propag_z = -0.5;
```

```
kernel = zeros(2*res y, 2*res x);
if (propag z < 0) ii = -i; else ii = i; endif
for column = 1:2* res x
  for row = 1:2* res y
    if (column < res x)
      x = (column - 1) * sampling;
    else
      x = (column-2*res x-1) * sampling;
    endif
```


Real part of the Rayleigh-Sommerfeld cyclic convolution kernel (Just for information; it has no physical meaning!)

Computer generated holography: 3D vision and beyond


```
field = zeros(2*res_y, 2*res_x);
field(1:res_y, 1:res_x) = hologram;
```

```
FTfield = fft2(field);
FTkernel = fft2(kernel);
```

```
FTfield2 = FTfield .* FTkernel;
```

```
field2 = ifft2(FTfield2);
image = field2(1:res_y, 1:res_x);
```


Numerical simulation of hologram propagation (Intensity picture – this would be actually captured)

Computer generated holography: 3D vision and beyond

Optical reconstruction

Numerical reconstruction

Computer generated holography: 3D vision and beyond

- forward propagation
 - in the z+ axis direction
 - hologram propagation in a distance $z_0 > 0$ real image appears - on-screen projection
 - original complex field propagation $U_P(x, y, 0)$ - no real image on z+ axis
- backward propagation
 - propagation to a distance $z_0 < 0$
 - convolution kernel K_c has to be complex conjugate

Lens simulation

- 1. propagation to a distance r: phase shift kr
- 2. propagation in a lens: phase shift ϕ
- 3. propagation to a distance r': phase shift kr'
- all contributions in phase in point X'
- \Rightarrow phase function of a lens $\varphi = -(kr + kr')$

 $\Rightarrow \text{ in } (x, y, 0): \varphi = -k[(x^2+y^2+a^2)^{1/2} + (x^2+y^2+a^{\prime 2})^{1/2}]$

Computer generated holography: 3D vision and beyond

- object replacement with a point cloud
 - extraordinary number of lights needed \Rightarrow slow
 - does not count with visibility
 - easy parallelization \Rightarrow fast for thousands of points

- object replacement with a flat image
 - the same as hologram propagation use of DFT
 - not for a 3D scene

- COS to the second secon
- object replacement with series of flat images
 - propagation $A \rightarrow H$, $B \rightarrow H$, $C \rightarrow H$, sum
 - simulation of 3D scene, use of DFT
 - does not count with visibility

- step-by-step propagation
 - propagatiom $A \rightarrow B$, masking,
 - $B \rightarrow C$, masking, $C \rightarrow H$
 - enables to replace 3D scene with several slices

- general step-by-step propagation
 - rotation $A \rightarrow A$ ', propagation $A' \rightarrow B'$, rotation $B' \rightarrow B$, masking, rotation $B \rightarrow B'$, propagation $B' \rightarrow C'$, ...
 - enables to render a scene with textured polygons

- point cloud rendering enhanced with ray casting for visibility testing
 - extremly slow

Computer generated holography: 3D vision and beyond

- scene breakup to rectangular patches
 - common visibility solution
 for a number of point sources
 and a number of hologram points

- analytic triangle patch propagation formula
 - visibility solution in one view only (mostly)
 - problem with diffuse surface reflection
- analytic line propagation formula
 - for wireframe models

- precalculated table of point sources fields, their fast summation on GPU
- approximation of light propagation
 - Rayleigh-Sommerfeld convolution 3× DFT
 - angular spectrum decomposition 2× DFT, direct calculation of DFT(kernel)
 - Fresnel approximation 1× DFT, paraxial
 - Fraunhofer approximation 1× DFT, paraxial, big distances

Angular spectrum decomposition

- a plane wave hitting plane z = 0: $U(x, y, 0) = A \exp\{-jk(ax + by)\}$ propagation vector $\mathbf{n} = (a, b, [1 - a^2 - b^2]^{1/2})$ $a = \mathbf{n} \cdot (1, 0, 0) = \cos \theta_x$ $b = \mathbf{n} \cdot (0, 1, 0) = \cos \theta_y$ direction cosines
- many plane waves hitting plane z = 0: $U(x, y, 0) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A(a/\lambda, b/\lambda)$ $\exp\{-jk(ax + by)\} dadb$

with $A(a/\lambda, b/\lambda) = 0$ for |a| > 1, |b| > 1

- definition of $A(a/\lambda, b/\lambda)$ instead of clearer A(a, b)will be advantageous in a while

Angular spectrum decomposition

• more often:
$$f_x = a/\lambda$$
, $f_y = b/\lambda$
i.e.

$$U(x, y, 0) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A(f_x, f_y) \exp\{-2\pi j(f_x x + f_y y)\} df_x df_y$$

$$= FT\{A(f_x, f_y)\}$$
i.e.

$$A(f_x, f_y) = FT^{-1}\{U(x, y, 0)\}$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} U(x, y, 0) \exp\{2\pi j(f_x x + f_y y)\} dx dy$$

Angular spectrum decomposition

• a plane wave hitting plane $z = z_0$: $U(x, y, z_0) = A \exp\{-jk(ax + by + cz_0)\}$ = $A \exp\{-jk(ax + by)\} \exp\{-jkz_0c\}$ $= A \exp\{-ik(ax + by)\}$ $\exp\{-\frac{i}{z_0}\left[1-a^2-b^2\right]^{1/2}\}$ • many planes hitting plane $z = z_0$: $U(x, y, z_0) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A(f_x, f_y)$ $\exp\{-j2\pi z_0[1/\lambda^2 - f_x^2 + f_v^2]^{1/2})\}$ $\exp\{-j2\pi(f_x x + f_y y)\} df_x df_y$ = FT{ $A(f_x, f_y)$ $\exp\{-j2\pi z_0[1/\lambda^2 - f_x^2 + f_v^2]^{1/2})\}\}$

Angular spectrum propagation

input: U(x, y, 0)output: $U(x, y, z_0)$ calculation: $A(f_x, f_y) = FT^{-1}\{U(x, y, 0)\}$ $U(x, y, z_0) = FT\{A(f_x, f_y)$ $exp\{-j2\pi z_0[1/\lambda^2 - f_x^2 + f_y^2]^{1/2})\}\}$

- mathematically equivalent to the R-S convolution
- just two Fourier transforms
- numerically easier for small z₀
 (R-S is better for bigger z₀ see kernel sampling)

Rayleigh-Sommerfeld solution

$$U(x, y, z_0) = -\frac{1}{2\pi} \iint_{hologram} U(\xi, \eta, 0) \times (-jk - \frac{1}{r}) \frac{\exp(-jkr) z_0}{r} d\xi d\eta$$

$$r = [(x - \xi)^{2} + (y - \eta)^{2} + z_{0}^{2}]^{1/2}$$

= $z_{0} [1 + (x - \xi)^{2}/z_{0}^{2} + (y - \eta)^{2}/z_{0}^{2}]^{1/2}$
\[\delta z_{0} [1 + (x - \xi)^{2}/2z_{0}^{2} + (y - \eta)^{2}/2z_{0}^{2}]
= $z_{0} + (x - \xi)^{2}/2z_{0} + (y - \eta)^{2}/2z_{0}$
= $z_{0} + (x^{2} + y^{2})/2z_{0} + (\xi^{2} + \eta^{2})/2z_{0} - (x\xi + y\eta)/z_{0}$

Fresnel approximation

For
$$z_0 \gg x$$
, y:

$$U(x, y, z_0) = -\frac{1}{2\pi} \iint_{hologram} U(\xi, \eta, 0) \times (-jk - \frac{1}{r}) \frac{\exp(-jkr)z_0}{r} d\xi d\eta$$

$$= \frac{jkz_0}{2\pi} \iint_{hologram} U(\xi, \eta, 0) \frac{\exp(-jkr)}{r^2} d\xi d\eta$$

$$= \frac{jk}{2\pi z_0} \iint_{hologram} U(\xi, \eta, 0) \exp(-jkr) d\xi d\eta$$

Computer generated holography: 3D vision and beyond

Fresnel approximation

Fresnel approximation

$$= \frac{jk}{2\pi z_0} \exp(-jkz_0) \exp(-jk(x^2 + y^2)/2z_0) \times FT\{ U(\xi, \eta, 0) \exp(-jk(\xi^2 + \eta^2)/2z_0) \}$$

where after FT calculation substitute

$$f_{x} = x/\lambda z_{0}$$
$$f_{y} = y/\lambda z_{0}$$

- approximation valid for on-axis case, big z_0 $z_0^3 \gg \pi/4\lambda \max\{[(x - \xi)^2 + (y - \eta)^2]^2\}$
- just one Fourier transform

classical H1 – H2 process
1. make a classical hologram (H1)

- classical H1 H2 process
 - 2. illuminate H1 with a conjugate wave
 - 3. make a hologram of a hologram (H2)

Computer generated holography: 3D vision and beyond

102 / 120

- classical H1 H2 process
 4. illuminate H2 with a conjugate wave
 - an orthoscopic image, viewing aperture H1

- classical white light hologram
 - H1 hologram of a scene
 - "viewed through a narrow window"
- digitally: slow calculation, small H1 surface

- classical white light hologram
 - H2 hologram of the H1 hologram
- digitally: no visibility checks ⇒ fast calculation

- classical white light hologram reconstruction
 - resembles view through a narrow window
 - horizontal parallax only image

- classical white light hologram reconstruction
 - "wrong" reconstruction color shifts reconstruction
 - H2 extracts "the right" color from white light

- white light hologram structure
 - just "bold" points will be visible due to rays in the cutting plane

- white light hologram structure
 - in H2 recording, those "bold" point will affect only a part of the H2
 - \Rightarrow "bold" points affect a part of H2 only

- digital white light HPO hologram (1)
 - split the H2 into parts hololines
 - just one line of the hololine is considered
 - calculate the hololine using "bold" points only

- digital white light HPO hologram (2)
 - assume the "bold" points to be lines
 - \Rightarrow they emit cylindrical wave
 - \Rightarrow object wave constant in vertical direction

- digital white light HPO hologram (3)
 - hololine has the area width × height
 - object wave in every horizontal line (subline) is the same ⇒ calculate once & copy

- digital white light HPO hologram (4)
 - in reconstruction, the wave from a hololine should hit the observation window

- digital white light HPO hologram (4)
 - the light has to change its angle from θ_{ill} to $\theta_{out N}$
 - in hololine N, add reference wave with angle $\sin \theta_{ref} = \sin \theta_{ill} \sin \theta_{out N}$

- classical holographic stereogram (1)
 - record left image to the left part of H1 only

- classical holographic stereogram (2)
 - record right image to the right part of H1 only

- classical holographic stereogram (3)
 - record H2 in a common way

Computer generated holography: 3D vision and beyond

117 / 120

- classical holographic stereogram (4)
 - after illumination, the left eye watches the left image, the right eye watches the right image

- digital holographic stereogram
 - visibility solving in particular directions using computer graphics (ray optics)
 - hologram has to
 display right image
 in the right
 direction
 - compatible with common imaging cameras

Holographic stereogram by Geola Digital

FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CENTRE OF COMPUTER GRAPHICS AND VISUALIZATION

PLZEŇ CZECH REPUBLIC

Questions?

http://graphics.zcu.cz

- ► graphics.zcu.cz
- holo.zcu.cz
- www.kiv.zcu.cz